
Evaluation of a refinement algorithm for the
generation of referring expressions

Luciana Benotti and Romina Altamirano

LIIS Team, Universidad Nacional de Córdoba, Argentina
benotti@famaf.unc.edu.ar, ialtamir@famaf.unc.edu.ar,

http://cs.famaf.unc.edu.ar/~luciana/,http://cs.famaf.unc.edu.ar/~romina/

Abstract. In this paper we describe and evaluate an algorithm for gen-
erating referring expressions that uses linear regression for learning the
probability of using certain properties to describe an object in a given
scene. The algorithm we present is an extension of a refinement algo-
rithm modified to take probabilities learnt from corpora into account.
As a result, the algorithm is able not only to generate correct refer-
ring expressions that uniquely identify the referents but it also generates
referring expressions that are considered equal or better than those gen-
erated by humans in 92% of the cases by a human judge. We classify
and give examples of the referring expressions that humans prefer, and
indicate the potential impact of our work for theories of the egocentric
use of language.

1 Introduction

A referring expression (RE) is an expression that unequivocally identifies the
intended target to the interlocutor, from a set of possible distractors, in a given
situation. For example, if we intend to identify a certain animal d from a picture
of pets, the expression “the dog” will be an RE if d is the only dog in the picture,
and if we are confident that our interlocutor will identify d as a dog.

The generation of referring expressions (GRE) is a key task of most natural
language generation (NLG) systems [18]. Depending on the information available
to the NLG system, certain objects might not be associated with an identifier
which can be easily recognized by the user. In those cases, the system will have
to generate a, possibly complex, description that contains enough information so
that the interlocutor will be able to identify the intended referent. The generation
of referring expressions is a well developed field in automated natural language
generation building upon GRE foundational work [21, 6, 7].

Low complexity algorithms for the generation of REs have been proposed [3,
2]. These algorithms are based on variations of the partition refinement algo-
rithms of [16]. The information provided by a given scene is interpreted as a
relational model whose objects are classified into sets that fit the same descrip-
tion. This classification is successively refined till the target is the only element
fitting the description of its class. The existence of an RE depends on the infor-
mation available in the input scene, and on the expressive power of the formal
language used to describe elements of the different classes in the refinement.

Existing GRE algorithms can effectively compute REs for all individuals
in the domain, at the same time. The algorithms always terminate returning
a formula of the formal language chosen that uniquely describes the target.
However, GRE algorithms require a ranking of the properties that are to be
used in the referring expressions, and the naturalness of the generated REs
strongly depends on this ranking. [1] show that a refinement algorithm using the
description language EL as formal language is capable of generating 75% of the
REs present in the dataset described in [20]. In this paper we perform a human
evaluation of the REs generated by this algorithm on two new corpora and show
that even when the generated REs do not coincide with those found in corpora,
people actually prefer the REs generated by the system in 92% of the cases.

The rest of the paper is structured as follows. In Section 2 we introduce the
technical details of the refinement algorithm and explain how it uses the ranking
of properties. In this section, we assume that this list is provided as input to
the algorithm. In Section 3, we show how to estimate the probability of use
of a property from corpora in order to obtain the ranking of properties. Given
corpora consisting of pairs (scene, target) together with the REs used to describe
the target in each case, we propose a method to compute the probability of use of
each property for each scene, and use a machine learning approach to generalize
this approach to new targets and scenes not appearing in the corpora. Section 4
presents an automatic evaluation and a human evaluation of the generated REs.
In Section 5 we discuss related work and analyze the structure of the refinement
algorithm in relation to the work of [12], on the egocentric basis of language
generation.

2 The referring expression generation algorithm

Refinement algorithms for GRE are based on the following basic idea: given a
scene S, the objects appearing in S are successively classified according to their
properties into finer and finer classes. A description (in some formal language
L) of each class is computed every time a class is refined. The procedure always
stops when the set of classes stabilizes, i.e., no further refinement is possible with
the information available in the scene1. If the target element is in a singleton
class, then the formal description of that class is a referring expression; otherwise
the target cannot be unequivocally described (in L).

We present a modification of the algorithm in [3] where the fixed order of
properties in the input scene is replaced by a finite probability distribution.
The resulting algorithm (see Figure 3) is now non-deterministic: two runs of the
algorithm with the same input might result in different REs for objects in the
scene. The input to the algorithm will be a relational modelM = 〈∆, ||·||〉, where
∆ is the non-empty domain of objects in the scene, and || · || is an interpretation
function that assigns to all properties in the scene its intended extension. For
example, the scene shown in Figure 1 could be represented by the model M =

1 Of course, if we are only interested in a referring expression for a given target we can
stop the procedure as soon as the target is the only element of some of the classes.

〈∆, || · ||〉 shown in Figure 2. In Figure 2, ∆ = {e1, . . . , e7}, and for example the
extension of blue is ||blue|| = {e5, e6, e7} because 3 objects are blue in the scene.
In the Figure, xn indicates that the object is in position n with regard to its
x-dimension in the grid and yn is interpreted similarly.

Fig. 1. Scene, target blue chair facing left

e4

front
small
gray
x1
y2
fan

e5

back
large
blue
x2
y2

chair

e6

back
large
blue
x4
y3
fan

e7

left
large
blue
x5
y3

chair

e1
left
large
green
x2
y1
fan

e2
left
large
green
x4
y1

chair

e3
front
small
gray
x5
y1

chair

Fig. 2. The scene as a relational model

On termination, the algorithm computes what are called the L-similarity
classes of the input modelM. Intuitively, if two elements in the model belong to
the same L-similarity class, then L is not expressive enough to tell them apart
(i.e., no formula in L can distinguish them). All the objects in Figure 1 are
distinguishable, but if, for instance, color and position are not considered then
e2 and e7 are indistinguishable and, hence, will remain in the same similarity
class when the algorithm terminates.

The algorithm we discuss uses formulas of the EL description logic lan-
guage [5] to describe refinement classes2. For a detailed description of EL, we
refer to [5]. The interpretation of the EL formula ∃green.> is the set of all the
green elements of the model. In Figure 1, ||∃green.>|| = {e1, e2}. The interpre-
tation of ψ u ϕ is the set of all elements that satisfy ψ and ϕ. In Figure 1,
||∃green.> u ∃chair.>|| = {e2}.

Now that we have an intuitive understanding of EL, we are ready to describe
Algorithms 1 and 2.

Algorithm 1 takes as input a model and a list Rs of pairs (R,R.puse) that links
each relation R ∈ REL, the set of all relation symbols in the model3, to some
probability of use R.puse. For example, green and large are relations in the model
of Figure 2. The set RE contains the formal description of the refinement classes
and it is initialized by the most general description >. The formula > can be
intuitively understood as the referring expression thing or thingummy. For each
R, we first compute R.rnduse, a random number in [0,1]. If R.rnduse ≤ R.puse
then R is used to refine the set of classes. The value of R.puse will be incremented

2 Notice, though, that the particular formal language used is independent of the main
algorithm, and different addL(R,ϕ,RE) functions can be used depending on the lan-
guage involved.

3 We represent each unary relation R as binary, hence ||∃R.>|| is the set of all elements
in the model that have the property R

Algorithm 1: Computing L-similarity classes

Input: A model M and a list Rs ∈ (REL× [0, 1])∗ of relation symbols with
their puse values, ordered by puse

Output: A set of formulas RE such that {||ϕ|| | ϕ ∈ RE} is the set of
L-similarity classes of M

RE← {>} // the most general description > applies to all elements

in the scene

for (R,R.puse) ∈ Rs do
R.rnduse = Random(0,1) // R.rnduse is the probability of using R

R.incuse = (1 − R.puse) / MaxIterations

repeat
while ∃(ϕ ∈ RE).(#||ϕ|| > 1) do // while some class has at least two

elements

RE’ ← RE // make a copy for future comparison

for (R, R.puse) ∈ Rs do
if R.rnduse ≤ R.puse then // R will be used in the expression

for ϕ ∈ RE do addEL(R, ϕ, RE) // refine classes using R;

if RE 6= RE’ then // the classification has changed

exit // exit for-loop to try again highest R.puse

if RE = RE’ then // the classification has stabilized

exit // exit while-loop to increase R.puse

for (R,R.puse) ∈ Rs do R.puse← R.puse+ R.incuse // increase R.puse ;

until ∀((R,R.puse) ∈ Rs).(R.puse≥ 1) // R.puse are incremented until 1;

Algorithm 2: addEL(R, ϕ, RE)

if FirstLoop? then // are we in the first loop?

Informative ← TRUE // allow overspecification

else Informative ← ||ψ u ∃R.ϕ|| 6= ||ψ||; // informative: smaller than the

original?

for ψ ∈ RE with #||ψ|| > 1 do
if ψ u ∃R.ϕ is not subsumed in RE and // non-redundant: can’t be

obtained from RE?
||ψ u ∃R.ϕ|| 6= ∅ and // non-trivial: has elements?

Informative then
add ψ u ∃R.ϕ to RE // add the new class to the classification

remove subsumed formulas from RE // remove redundant classes

Fig. 3. Refinement algorithm with probabilities for the EL-language

by R.incuse in each main loop, to ensure that all relations are, at some point,
considered by the algorithm. This ensures that a referring expression will be
found if it exists; but gives higher probability to expressions using relations
with a high R.puse. While RE contains descriptions that can be refined (i.e.,
classes with at least two elements) the refinement function addL(R,ϕ,RE) is
called successively with each relation in Rs. If the model contains binary relations

between its elements, a change in one of the classes, can trigger changes in others.
For that reason, if RE changes, we exit the for loop to start again with the
relations of higher R.puse. If after trying to refine the set with all relations in Rs,
the set RE has not changed, then we have reached a stable state (i.e., the classes
described in RE cannot be further refined with the current R.puse values). We
will then increment all the R.puse values and start the procedure again.

Algorithm 2 behaves as follows. The for loop refines each description in RE
using the relation R and the other descriptions already in RE, under certain con-
ditions. The new description should be non-redundant (it cannot be obtained
from classes already in RE), non-trivial (it is not empty), and informative (it
does not coincide with the original class). If these conditions are met, the new de-
scription is added to RE, and redundant descriptions created by the new descrip-
tion are eliminated. The if statement at the beginning of Algorithm 2 disregards
the informativity test during the first loop of the algorithm allowing overspeci-
fication; without this condition the algorithm would generate minimal REs. For
example, a minimal RE for e2 is “the green chair” while an overspecified RE for
this element is “the green chair in the top row”.

3 Learning to describe new objects from corpora

In the previous section we presented an algorithm that assumes that each relation
R used in a referring expression has a known probability of use R.puse. Intuitively,
the R.puse is the probability of using relation R to describe the target. In Tables 1
and 2 we show the probabilities of use that we are able to learn from corpora
and to apply to the models of Figures 1 and 4. In Figure 1, the probability of
using blue to describe the target is higher than the probability of using facing
left, although both are properties of the target.

The probability of using green is not zero because a green object may be
used in a relational description of the target (for example, “the blue chair far
from the green fan”).

In this section, we describe how to calculate these probabilities from corpora.
The general set up is the following: we assume available a corpus of REs associ-
ated to different scenes that are prototypical of the domain in which the GRE
algorithm has to operate; we call this the training data. We then show how to
generalize these values to other scenes in the domain, using a machine learning
algorithm. We exemplify the methodology using the TUNA corpus.

The TUNA Corpus [10] is a set of human-produced referring expressions
(REs) for entities in visual domains of pictures of furniture and people as exem-
plified in Figures 1 and 4. The corpus was collected during an online elicitation
experiment in which subjects typed descriptions of a target single referent or pair
of referents. In each picture there were 5 or 6 other objects. In the experiment,
the participation was not controlled, but there was a main condition manipulated
the +/-LOC: in +LOC condition, participants were told that they could refer to
entities using any of their properties (including their location on the screen). In
the -LOC condition, they were discouraged from doing so, though not prevented.

Top 10 relations in Figure 1 learned puse
chair 0.94
blue 0.89
y3 0.29
x5 0.27
left 0.25
large 0.21
green 0.05
small 0.05
back 0.02
y1 0.02
Table 1. Probabilities of use learned from
corpora and instantiated for Figure 1

Top 10 relations in Figure 4 learned puse
person 0.79
hasGlasses 0.71
y2 0.20
x5 0.18
hasHair 0.13
hairDark 0.13
hairLight 0.11
ageOld 0.05
y3 0.03
x2 0.02
Table 2. Probabilities of use learned from
corpora and instantiated for Figure 4

The attributes for each entity include properties such as an object’s color or a
person’s characteristic such as having dark hair. In this paper we will use the
singular part of the TUNA corpus. The corpus contains 780 singular referring
expressions divided into 80% training data, 20% test.

In order to collect the corpus, each participant in the elicitation experiment
carried out 38 trials, 20 furniture descriptions and 18 people descriptions. For
each word in the corpus we train a machine learning model that computes a
function of its puse. When this function is instantiated with a set of domain
independent features that we define below.

Fig. 4. Scene used during the collection of the TUNA corpus. The referring expression
collected has to distinguish the target from the rest of the people. For this scene, the
RE was the man with glasses

.

To clarify the computation of R.puse in the training data and the model M
associated to each scene we list the required steps in detail, and discuss how we
carried them out in the TUNA corpus:

1. Tokenize the referring expressions and call the set of tokens T . In particular,
multi-word expressions like “in the top row” should be matched to a single
token like y1.

2. Replace hyperonyms from T . E.g., if both man and picture appear in T ,
delete picture.

3. If the set of tokens obtained in the previous steps contains synonyms nor-
malize them to a representative in the synonym class, and call the resulting
set REL; it will be the signature of the modelM used by the algorithm. E.g.,
the tokens man and guy are both represented by the token man.

4. For each scene, define M such that the interpretation || · || ensures that all
REs in the corpus are REs. E.g., the EL formula ∃left.>u∃blue.>u∃chair.>,
which represents the RE “the blue chair facing left” found in the corpus for
the scene in Figure 1, is a RE for the target in the model M depicted in
Figure 2.

5. For each R ∈ REL we assign 1 to R.puse if R occurs in the RE, we assign
0 otherwise. In case that the corpus has more than one RE per scene we
calculate the proportion of appearance of each property.

The learning was done with the machine learning toolkit WEKA [11], learning
on the training data of the TUNA corpus. We use linear regression to learn the
function of puse for each relation in the signature. For a given scene in the
test set, we replace the variables of the obtained function by the values of the
features in the scene that we want to describe. We use simple features to obtain
the function, all the features can be extracted automatically from the relational
model and are listed in Table 3.

target-has whether the target element has the property
location-has whether the RE may use the location of the target in the figure
discrimination 1 / the number of objects in the model that have the property
puse probability of using the property to describe the target

Table 3. Features used for learning the puse for each token in the signature of the
scenes of the TUNA corpus

Our feature set is intentionally simplistic in order for it to be domain inde-
pendent. As a result there are some complex relations between characteristics of
the scenes that it is not able to capture.

Starting from the scene in Figure 1 the resulting signature and their associ-
ated puse are listed in the Table 1 and for the Figure 4 in Table 2. Notice that
even though the TUNA corpus contains only one RE per scene the puse values
represent the proportion of use of each property as learned using linear regres-
sion.

Notice that the values R.puse obtained in this way should be interpreted as
the probability of using R to describe the target in modelM, and we could argue
that they are correlated to the saliency of R in the model.

Using linear regression we are able to learn interesting characteristics of the
domain. To start with, it learns known facts such that the saliency of a color

depends strongly on whether the target object is of that color, and it does not
depend on its discrimination power in the model. Moreover, it learns that size
relations (e.g., large and small) are used more frequently when it has a higher
discriminative power which confirms a previous finding reported in [20]. Finally,
it is able to learn that the orientation properties (e.g., facing left and facing
right) are used as a last resource, when it is necessary to identify the target
uniquely.

4 Evaluation

In this section we present two different evaluations we performed on our algo-
rithm. Section 4.1 describes an evaluation with respect to the state of the art
algorithm GRAPH [13]. GRAPH was the top performer in both editions of the
ASGRE, shared task [10]. Due to the limitations of the automatic metrics, in
Section 4.2 we perform a human evaluation in which we ask human subjects
to compare the output produced by our algorithm to expressions produced by
humans.

4.1 Automatic evaluation

In this section we present the comparison of our algorithm to the state of the art
algorithm GRAPH introduced above. The GRAPH algorithm is a deterministic
algorithm and hence produces the same referring expression when run with the
same target and model. Our algorithm is non deterministic, it may give a dif-
ferent referring expression each time it is run. In order to compare them we run
our algorithm k times and we make a ranking of the top 20 produced referring
expressions ordered by the frequency they were produced. We use the test part of
the TUNA corpus to compare algorithm to the GRAPH algorithm whose results
on this dataset are described in [13] and reproduced in the Table 4.

The GRAPH algorithm defines the generation of referring expressions as a
graph search problem, which outputs the cheapest distinguishing graph (if one
exists) given a particular cost function. We compare to this algorithm using the
metrics accuracy, Dice and masi. Accuracy is defined as the percentage of exact
matches between each RE produced by a human and the RE produced by the
system for the same scene.

Dice coefficient is a set comparison metric, ranging between 0 and 1, where
1 indicates a perfect match between sets. For two attribute sets A and B, Dice
is computed as follows:

Dice(A,B) = 2×|A∩B|
|A|+|B|

The masi score [17] is an adaptation of the Jaccard coefficient which biases
it in favor of similarity where one set is a subset of the other. Like Dice, it ranges
between 0 and 1, where 1 indicates a perfect match. It is computed as follows:

masi(A,B) = δ × |A∩B||A∪B|

where δ is a monotonicity coefficient defined as follows:

δ =

0 ifA ∩B = ∅
1 ifA = B
2
3 ifA ⊂ B or B ⊂ A
1
3 otherwise

(1)

Intuitively, this means that those system-produced descriptions are preferred
which do not include attributes that are omitted by a human.

In Table 4 we show the automatic metrics and compare the performance of
our system with the GRAPH system for the first RE in the ranking and the first
20 REs in the ranking.

Dice masi ACCURACY

GRAPH system, Furniture domain .80 .59 .48
GRAPH system, People domain .72 .48 .28

Our system, Furniture domain (top 1) .80 .60 .47
Our system, People domain (top 1) .65 .37 .19

Our system, Furniture domain (top 20) .87 .75 .65
Our system, People domain (top 20) .81 .68 .60

Table 4. Comparison of the GRAPH algorithm and our system. We consider the 3
automatic metrics for the top 1 and the top 20 REs produced by our algorithm.

Accuracy, Dice and masi assess humanlikeness with respect to a corpus of
human referring expressions. In the Figure 5 the accuracy for our system and
the GRAPH system is compared. The left GRAPH corresponds to the furniture
domain and the right GRAPH corresponds to the people domain. We can see that
taking the top 1 RE our system accuracy is lower than GRAPH performance for
the people domain. However, if we consider the top 20 REs that our algorithm is
able to produce we can see that the accuracy for both domains gets higher than
60%. This shows that our algorithm is able to generate REs that are more similar
to those produced by humans than the GRAPH algorithm, although these REs
are not ranked first.

Another result that we can observe is that the people domain accuracy is
much lower for the top 1 RE than for the furniture domain (19 vs 47), but the
accuracy stabilizes when REs lower in our ranking are considered. This may be
explained by the fact that the training set for the people domain is smaller and
less balanced and hence, the probabilities of use inferred do not generalize as
well as in the furniture domain.

4.2 Human evaluation

We asked two native speaker judges of English to evaluate our referring expres-
sions via an experiment on the web. The authors of the paper did not participate

Fig. 5. Comparison of the accuracy of the GRAPH algorithm and our system. The
x axis indicates that the accuracy was calculated considering the x first REs in the
ranking. The y axis indicates the accuracy. Our system is depicted as a dotted line and
the GRAPH system as a continuous line.

during the evaluation. The judges could register to the evaluation system so that
they did not have to complete it in one go, the could come back to it later. Dur-
ing the evaluation we showed each judge the scenes and two randomly ordered
REs. One RE corresponded to the RE present in the corpus and produced by a
person and the other RE corresponded to the top 1 RE produced by our system.
We asked the judges to select the RE that would be more useful to identify the
target in the scene. That is, to select it from among the other objects in the
stimulus pictures.

Our goal is to show that even if the RE generated by our algorithm does not
coincide with the RE produced by a human in the corpus collection, it can be
judged as good or even better than the REs generated by humans.

In Table 5 we show the results from the human evaluation experiment. The
REs produced by the system were considered equal or better by both judges in
60 % of the cases and, by at least one judge in 92% of the cases.

Furniture domain People domain Weighted mean

system equal to human .46 .19 .33
system better by 2 judges .29 .24 .27
system better by 1 or 2 judges .51 .68 .59
system worse by 2 judges .03 .13 .08
system equal or better by 2 judges .75 .43 .60
system equal or better by 1 judge .97 .87 .92

Table 5. Percentage of system versus human selected choices

Below, we illustrate the evaluation experiment by showing examples of cases
in which the system expression was considered better by both judges, by only
one judge or by neither of them.

Figure 6 illustrates a case in which the human generated an underspecified
RE while the system produced an RE which unequivocally identifies the target.
The RE generated by the system for this figure is “small blue fan” while the RE
produced by the human is “blue fan”. The human RE fails to uniquely identify
the target and is then not preferred by the human judges. Humans are known
for producing underspecified REs which may be due to cognitive limitations
for not being able to consider the whole referential context at the same time.
Our algorithm is able to consider the whole referential context and combine this
ability with the probability of use of the REs learned from humans.

Fig. 6. Scene used during the collection
of the TUNA corpus. The human RE blue
fan, and the system small blue fan. Judges
prefer the system generated.

Fig. 7. Scene used during the collection
of the TUNA corpus. The human RE was
blue frontal chair, and the system the blue
chair in the bottom. Both human judges
prefer the system generated RE.

In Figure 7 the human RE was “blue frontal chair”, and the system RE was
“the blue chair in the bottom”; both judges selected the system RE. This case can
be explained by the fact that, in this domain, the property “bottom” helps more
during the identification than the property “frontal” because it concentrates the
attention of the interpreter in the lower part of the scene. Our system learns this
fact by learning a higher value of puse for “bottom” than for “frontal” from the
training data.

Figure 8 is an example for which both judges preferred the human expression.
The human RE was “the man with black hair”, and the system’s “the man
wearing glasses in the fourth column”. This example makes evident the fact
that, in the people domain some properties are more salient in some images
than in others because of different shades of colors. Gradable properties such as
this ones (in contrast to absolute properties) are still an open problem for GRE
algorithms.

Figure 9 illustrates a case in which the system RE was more overspecified
than the human RE; the system included “wearing glasses” while the human did
not. In this case one human subject preferred the system RE and the other the

Fig. 8. Scene used during the collection
of the TUNA corpus. The human RE was
the man with black hair, and the system
the man wearing glasses in the fourth col-
umn. Judges prefer the human RE.

Fig. 9. Scene used during the collection
of the TUNA corpus. The human RE was
man with a beard, and the system man
with a beard wearing glasses. Judges did
not agree in their preference.

human RE. The amount of overspecification is a subjective matter where human
themselves disagree. Further evaluation where REs are actually used for a task
would be interesting to investigate this issue.

5 Discussion and Conclusions

In this article we presented the evaluation of the algorithm presented in [3] ex-
tended to generate REs similar to those produced by humans. The modifications
proposed are based on the observation that humans frequently overspecify their
REs [8, 4]. We tested the proposed algorithm on the TUNA corpus and found
that it is able to generate a large proportion of the overspecified REs found
in the corpus without generating trivially redundant referring expressions. The
expressions generated are preferred by (one or more) human judges 92% of the
time for the TUNA corpus.

Different algorithms for the generation of overspecified and distinguishing
referring expressions have been proposed in recent years (see, e.g., [14, 19]). In
this paper we compare ourselves to the Graph algorithm [13] wich has been
shown to achieve better accuracy than algorithms describe in [14, 19] in the
TUNA shared task [10].

An interestesting outcome of our work is that it makes evident the relation-
ship between overspecification and the saliency of properties in the context os a
scene.

As we described in Section 2 the generation of overspecified REs is performed
in two steps. In the first iteration, the probability of including a property in the
RE depends only on its puse. We believe our definition of puse is intended to
captures the saliency of the properties for different scenes and targets. The puse
of a property changes according to the scene as we discussed in Section 3. This
is in contrast with previous work where the saliency of a property is constant in

a domain. In the first iteration, if the puse is high, that is, if the property is very
salient, it does not matter whether the property eliminates any distractor, it will
probably be used anyway. After all properties had a chance of being included in
this way, if the resulting RE is not distinguishing, then the algorithm enters a
second phase in which it makes sure that the RE identifies the target uniquely.

Our two-step algorithm is inspired by the work of [12] on egocentrism and
natural language production. Keysar et al. put forwards the proposal that when
producing language, considering the hearers point of view is not done from the
outset but it is rather an afterthought [12]. They argue that adult speakers pro-
duce REs egocentrically, just like children do, but then adjust the REs so that
the addressee is able to identify the target unequivocally. The egocentric step
is a heuristic process based in a model of saliency of the scene that contains
the target. As a result, the REs that include salient properties are preferred by
our algorithm even if such properties are not necessary to identify the target
univocally. Keysar et al. argue that the reason for the generate-and-adjust pro-
cedure may have to do with information processing limitations of the mind: if
the heuristic that guides the egocentric phase is well tunned, it succeeds with
a suitable RE in most cases and seldom requires adjustments. Interestingly, we
observe a similar behavior with our algorithm: when puse values learn from the
domain are used, the algorithm is not only much more accurate but also much
faster.

As future work we plan to evaluate our algorithm to generate referring ex-
pressions inside discourse as required by domains like those provided by Open
Domain Folksonimies [15]. We also plan to explore corpora obtain from interac-
tion, such as the GIVE Corpus [9] where it is common to observe multi shot REs.
Under time pressure subjects will first produce an underspecified expression that
includes salient properties of the target (e.g., “the red button”). And then, in
a following utterance, they add additional properties (e.g., “to the left of the
lamp”) to make the expression a proper RE identifying the target uniquely.

References

1. Altamirano, R., Areces, C., Benotti, L.: Probabilistic refinement algorithms for
the generation of referring expressions. In: Proceedings of the 24th International
Conference on Computational Linguistics. pp. 53–62 (2012)

2. Areces, C., Figueira, S., Goŕın, D.: Using logic in the generation of referring ex-
pressions. In: Pogodalla, S., Prost, J. (eds.) Proceedings of the 6th International
Conference on Logical Aspects of Computational Linguistics (LACL 2011). Lecture
Notes in Computer Science, vol. 6736, pp. 17–32. Springer (2011)

3. Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of descrip-
tion logic. In: Proceedings of the 5th International Natural Language Generation
Conference (INLG’08). pp. 42–49. Association for Computational Linguistics, Mor-
ristown, NJ, USA (2008)

4. Arts, A., Maes, A., Noordman, L., Jansen, C.: Overspecification facilitates object
identification. Journal of Pragmatics 43(1), 361–374 (2011)

5. Baader, F., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description
Logic Handbook: Theory, implementation and applications. Cambridge University
Press (2003)

6. Dale, R.: Cooking up referring expressions. In: Proceedings of the 27th annual
meeting on Association for Computational Linguistics. pp. 68–75 (1989)

7. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the
generation of referring expressions. Cognitive Science 19(2), 233–263 (1995)

8. Engelhardt, P., Bailey, K., Ferreira, F.: Do speakers and listeners observe the
gricean maxim of quantity? Journal of Memory and Language 54(4), 554–573
(2006)

9. Gargett, A., Garoufi, K., Koller, A., Striegnitz, K.: The GIVE-2 corpus of giv-
ing instructions in virtual environments. In: Proceedings of the 7th International
Conference on Language Resources and Evaluation (LREC). Malta (2010)

10. Gatt, A., Belz, A., Kow, E.: The TUNA challenge 2008: Overview and evaluation
results. In: Proceedings of the 5th International Conference on Natural Language
Generation. pp. 198–206. Association for Computational Linguistics (2008)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter
11(1), 10–18 (Nov 2009)

12. Keysar, B., Barr, D.J., Horton, W.S.: The Egocentric Basis of Language Use.
Current Directions in Psychological Science 7(2), 46–49 (Apr 1998)

13. Krahmer, E.J., Theune, M., Viethen, J., Hendrickx, I.: Graph: The costs of redun-
dancy in referring expressions. In: Proceedings of the 5th International Natural
Language Generation Conference, Salt Fork, Ohio, USA. pp. 227–229. The Asso-
ciation for Computational Linguistics, USA (June 2008)

14. de Lucena, D.J., Paraboni, I.: USP-EACH frequency-based greedy attribute selec-
tion for referring expressions generation. In: Proceedings of the 5th International
Conference on Natural Language Generation (INLG 2008). pp. 219–220. Associa-
tion for Computational Linguistics (2008)

15. Pacheco, F., Duboue, P., Domı́nguez, M.: On the feasibility of open domain refer-
ring expression generation using large scale folksonomies. In: Proceedings of the
2012 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. pp. 641–645. Association for
Computational Linguistics, Montréal, Canada (June 2012)

16. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

17. Passonneau, R.: Measuring agreement on set-valued items (masi) for semantic
and pragmatic annotation. In: In Proceedings of the International Conference on
Language Resources and Evaluation (LREC (2006)

18. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, Cambridge (2000)

19. Ruud, K., Emiel, K., Mariët, T.: Learning preferences for referring expression gen-
eration: Effects of domain, language and algorithm. In: INLG 2012 Proceedings
of the Seventh International Natural Language Generation Conference. pp. 3–11.
Association for Computational Linguistics, Utica, IL (May 2012)

20. Viethen, H.A.E.: The Generation of Natural Descriptions: Corpus-Based Inves-
tigations of Referring Expressions in Visual Domains. Ph.D. thesis, Macquarie
University, Sydney, Australia (2011)

21. Winograd, T.: Understanding natural language. Cognitive Psychology 3(1), 1–191
(1972)

