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ABSTRACT
Computer science educators are increasingly using interac-
tive learning content to enrich and enhance the pedagogy of
their courses. A plethora of such learning content, specifi-
cally designed for computer science education, such as visu-
alization, simulation, and web-based environments for learn-
ing programming, are now available for various courses. We
call such content smart learning content. However, such
learning content is seldom used outside its host site despite
the benefits it could offer to learners everywhere. In this
paper, we investigate the factors that impede dissemination
of such content among the wider computer science educa-
tion community. To accomplish this we surveyed educators,
existing tools and recent research literature to identify the
current state of the art and analyzed the characteristics of
a large number of smart learning content examples along
canonical dimensions. In our analysis we focused on exam-
ining the technical issues that must be resolved to support
finding, integrating and customizing smart learning content
in computer science courses. Finally, we propose a new ar-
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chitecture for hosting, integrating and disseminating smart
learning content and discuss how it could be implemented
based on existing protocols and standards.
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tion]: Computer Uses in Education

General Terms
Design

Keywords
smart learning content, educational tools, classroom man-
agement, teaching with technology, intelligent tutoring sys-
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1. INTRODUCTION
Education in the 21st century is being transformed by

the Web. The Web now offers facilities that have the po-
tential to rapidly change education at all levels. Blended
learning, which augments traditional classroom education
with online resources is now state of practice almost every-
where. Online learning resources such as offered by Khan
academy (https://www.khanacademy.org) have empowered
the individual to be an independent self-learner. At the
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mass-education level, online technologies have made possi-
ble massive open online courses (MOOCs) [61] whose full
potential is yet to be realized.

The embrace of online technologies by educators has re-
sulted in the availability of not only a large number of learn-
ing resources, but also resources of high quality. In the past,
text, images and videos have been the main forms of elec-
tronic content for a long time, often organized as course
material in learning management systems (LMSs) such as
Moodle (https://moodle.org). Course pedagogy has been
augmented by various interactive services, such as discussion
forums, chats and wikis, integrated into LMSs to provide
communication and collaboration facilities between individ-
ual learners, and learners and teachers.

A more powerful breed of online resources has emerged
during the past 10+ years, consisting of tools that have gone
well past static content to provide interactive engagement
from various forms of feedback to adaptation such as learner-
controlled animation, dynamic visualization, and learner-led
simulation. Typical examples within the computer science
education domain include program and algorithm visualiza-
tion and simulation tools [81, 78, 87], automatic assessment
services for programming exercises [38], intelligent tutoring
systems (e.g., [68]) and various forms of recommendation
and social navigation tools, e.g.,[26].

In this report, we will focus specifically on such advanced
content, which we call smart learning content. We will char-
acterize its nature, and look at it from the points of view
of different stakeholders such as students, teachers, con-
tent authors, tool developers, and administrators. Apart
from adaptive personalization and sophisticated forms of
feedback, smart learning content often also authenticates
the user, models the learner, aggregates data, and supports
learning analytics. We will examine the implications of pro-
viding these features on the technology needed to implement
and support smart learning content.

We will analyze the challenges associated with using, au-
thoring, and developing smart learning content, as well as
related software support. We will discuss problems that in-
hibit adopting, sharing and customizing such content, and
propose new technical solutions to overcome the challenges.

Our motivation for this work grows from multiple obser-
vations: 1) while many educators and researchers are de-
veloping smart learning content, most of the content has
seen very limited use outside its home site; 2) it is often
hard to integrate smart learning content with other smart
learning content and/or LMSs; and 3) it is difficult to cus-
tomize smart learning content to local needs. These prob-
lems have been recognized and documented earlier in sev-
eral works. Roessling, Malmi et al. [72] discussed different
kinds of computer augmented learning management systems
(CALMS), a term they used for LMSs that are specifically
designed for computer science education. They surveyed
various specialized software tools for CS education, as well
as pedagogical, practical and technical aspects of building
CALMS. Roessling, Crescenzi et al. [73] took a narrower
point of view and focused on how such CS specific learning
resources could be integrated into Moodle. Recently, Korho-
nen, Naps et. al. [55] discussed similar issues in the context
of interactive computer science education books that they
called icseBooks. They designed a software architecture for
the implementation of such books, taking into account the
needs of various stakeholders (authors, teachers, and CSE

researchers).
Our work in this paper continues along the above lines.

We present a conceptual framework to analyze different kinds
of smart learning content, and apply it to survey the cur-
rent state of the art in the field. We analyze the challenges
of adoption and interoperability of smart learning content
from the perspective of different stakeholders (teachers, con-
tent authors, and tool developers) while also considering user
modelling and personalization issues in smart learning con-
tent. We propose a new software architecture for integrating
smart learning content, and describe how it could be imple-
mented based on current protocols and standards in learning
technologies.

Our report is compiled as follows. In Section 2, we will
analyze in detail the different types of electronic learning
content and formulate a definition for smart learning con-
tent. In Section 3, we will present an overview of the state
of the art by summarizing our findings from online and lit-
erature surveys. In Section 4, we will analyze the problems
and challenges in adopting and using smart learning content.
Section 5 includes our proposal for addressing the main tech-
nical challenges. We will discuss the pros and cons of the
proposal in Section 6. Finally, we contrast our contribution
with related work and discuss future work in Section 7.

We acknowledge that readers of this report have differ-
ent backgrounds and foci of interest, and we therefore give
the following recommendation for reading the report. Those
who are mainly interested in getting an overview of smart
learning content and possibly adopting them as such, we en-
courage reading Sections 2, 3, and 6, as well as Appendix
A. The readers who have a technical interest in integrating
smart learning content, either as developers of such content
themselves or integrating the content with other systems
they are using, we recommend especially Sections 2, 3.4,
3.5, 4, 5 and 6.

2. DEFINING SMART LEARNING CONTENT
The term “smart content” has been used in various con-

texts, including the financial industry, business-to-business
solutions and digital marketing [51]. In this report, to avoid
confusion, we use the term smart learning content (SLC). In
order to be able to define this term, we will first discuss the
types of electronic learning content (ELC) currently avail-
able. Note that we will not include non-electronic learning
content, such as printed textbooks or physical laboratory
equipment in our discussion.

Traditional ELC includes static text, images and videos
on web pages, typically organized as hypertext, which links
various pages together. Wikipedia and YouTube are typical
examples of such content. Such ELC has been usually orga-
nized for educational purposes using learning management
systems (LMS), which can directly host content and provide
links to external content. ELCs that incorporate interac-
tive activities have included multiple choice questionnaires
(MCQs) used for self-tests or quizzes.

While these ELCs have found use in all disciplines, in some
disciplines such as computer science, educators have devel-
oped more elaborate learning resources that present dynamic
and typically interactive learning content tailored to the dis-
cipline. For example, in the field of computer science educa-
tion we can distinguish the following kinds of SLC (see See
Appendix A for more information about some of the listed
SLC):
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• Program visualization (e.g., Jeliot, jGRASP, BlueJ [4,
19, 53]) and algorithm visualization (e.g., Animal or
jHAVE [74, 65]) tools that allow students to explore
and understand the dynamic nature of program exe-
cution and how algorithms work.

• Automatic assessment tools (e.g., BOSS, CourseMark-
er, Web-CAT, and Test My Code [32, 45, 24, 90]) that
manage and grade student programming assignments
submissions.

• Coding tools (e.g., CodeLab (http://turingscraft.
com/), CloudCoder (http://cloudcoder.org/), and
Codecademy (http://www.codecademy.com/) that sup-
port the learning of programming by having the stu-
dent write snippets of code.

• Algorithm and program simulation tools (e.g., TRAK-
LA2 [54], JSAV [48], UUhistle [82]) that let the user
carry out simulation operations using tailored graphi-
cal user interfaces.

• Problem-solving support tools (e.g., Problets [57, 58],
js-parsons [40, 39], WadeIn [11]) that have the student
learn concepts by solving targeted problems. Many of
these are adaptive (e.g., Problets [56], ELM-ART [12],
JavaGuide [36]) and can be classified as intelligent tu-
toring systems.

• Other kinds of systems such as social navigation sys-
tems (e.g., Educo [59] or Progressor [35]) that provide
information about how peers have used and progressed
through the learning resources, and thus support re-
flection of one’s own working and progress.

In order to build a big picture of such a multitude of tools
and systems and how they are related to each other, as well
as to traditional ELCs, we need to identify different char-
acteristics of these SLCs. Here, we attempt a canonical
description of their essential characteristics. We start by
positing that some form of interactivity is a central
aspect in all SLCs. Content that is presented to learners
without any interaction is not smart learning content. For
the purposes of our definition, interaction denotes exchange
of data between the learner and the learning content and
happens in the following three stages (see Figure 1).

1. Input is the data provided by the learner to the SLC.
It is on a continuum from pre-specified (e.g., play-
pause-rewind buttons for animation and visualization)
to free-form (e.g., code written by the learner, free-
form input provided by the learner for visualization).

2. Process denotes how the SLC processes the input pro-
vided by the learner to select/generate output. If the
SLC processes the input and generates/selects the out-
put all on its own, it is fully computational. If on the
other hand, the SLC merely facilitates the exchange
of data between two or more human agents, it is not
computational. The level of computational support is
also a continuum from fully to none.

3. Output is the data provided by the SLC to the learner
in response to the input. It is also on a continuum from
generic, i.e., the same output is provided regardless of
the learner/context (e.g., the same canned response

to all learners: “thank you for your submission”) to
customized, i.e., the output is customized to the learner
and/or context (e.g., whether the learner’s answer is
correct or not, the pages the learner must visit next
based on prior performance of the learner).

Note that output entails the traditional notion of feed-
back, and customized output is what is traditionally referred
to as adaptive feedback.

Figure 1: The three stages of exchanging data be-
tween the learner and SLC

The level of smartness of learning content can now be
characterized as being on a continuum from pre-specified
input/generic output to free-form input/customized output:

• A non-computational tool with pre-specified input and
generic output is not smart, e.g., a traditional multiple-
choice questionnaire (MCQ).

• A fully computational tool with free-form input, cus-
tomized output is certainly smart, e.g., an automatic
essay evaluation system which gives tailored feedback
on various aspects of a submitted essay.

The continuum described above can be presented as a
three dimensional space with axes along Input dimension,
Output dimension and Process dimension. In Figure 2 we
illustrate the categorization of various online learning tools
along these three dimensions or axes. To avoid confusion
in presenting 3-dimensional data, we present the Process di-
mension in terms of two adjacent pictures where the left one
describes non-computational content and the right one fully
computational content. Most examples fall somewhere be-
tween these extremes. Note that the list of tools categorized
in the figure is not meant to be comprehensive.

In Figure 2:

• Hypertext is categorized as pre-specified input (learner’s
choices of hyperlinks are pre-specified) and generic out-
put (pages do not change to suit the learner’s needs).
Adaptive hypertext also has pre-specified input, but
the output is more customized than in the case of
hypertext, because the selection and presentation of
pages is based on learner interaction.

• Online MCQ without feedback is non-computational,
has pre-specified input, and generic output (such as
“thank you, your responses were received”). Online
MCQ that provides summative feedback is computa-
tional and more customized. Online MCQ that pro-
vides formative feedback and allows the learner to re-
vise his/her answer is more computational with more
customized output.
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Figure 2: Examples of learning content classified by using input (horizontal axis), process and output (vertical
axis) dimensions. Note, the left and right figures present the two extremes of the process dimension. For
clarity, other values on the process dimension are not visualized. Note also that the items are simple some
selected examples to highlight to categorization system, and their positions in the graph only approximately
reflect their value within the two other axes
.

• Automated program assessment is fully computational,
with free-form input (code), and somewhat customized
output (based on the code written by the learner).
Summative (only whether the program is correct or
not) and formative feedback (feedback including why
the program is incorrect) are on different parts of the
output continuum.

• Algorithm visualization is fully computational (unless
made manually by the user). Its input could range
from fixed input data manipulation to free-form user
input data, the latter including manipulation of the
underlying code itself. The same applies to program
visualization.

• Algorithm and program simulation exercises are com-
putational (supported by the tool, although the learner
manipulates the provided visualization). The input is
pre-specified and the output is moderately customized.

Finally, in order to provide customized output, SLCs must
collect data about the learner’s interactions. They may save
the collected data to display the learner’s progress, provide
suspend-and-resume capability to the learner, generate re-
ports for the teacher and provide analytic capabilities to the
author of the SLC.

3. SURVEY OF THE FIELD
This section provides an overview of the current state of

the use and development of SLCs for computer science. It is
based on an online survey of computer science educators ask-
ing them to identify the SLCs they use, and their opinions
about the barriers to using SLCs (The survey instrument
is included in Appendix C). To augment the collection of
practically used SLC contributed by the respondents with

most recent developments, we also surveyed recent litera-
ture. This survey produced an additional set of recently
reported SLC. The collected SLC were reviewed and used
to build a pedagogical categorization of SLC, which was, in
turn, used to categorize the systems collected through both
surveys1. In addition, we used the collected SLC as a basis
to survey two important SLC issues: hosting solutions and
data usage.

The section is structured as follows. The method for con-
ducting the surveys is outlined in Section 3.1, while Sec-
tion 3.2 discusses the responses from the online survey, out-
lining the use and challenges related to current SLCs. Sec-
tion 3.3 provides a categorization of the SLCs from the sur-
veys based on the dimensions in Section 2, and, in addition,
discusses pedagogical foundations in current SLCs. Finally,
Sections 3.4 and 3.5 discuss hosting smart learning content
and gathering data from such systems respectively. The last
two subsections may be of interest to only for those who are
themselves engaged with developing smart learning content
or integrating such content with other tools.

3.1 Method
The online survey was designed to gather information

from the following aspects:

• What kinds of SLCs are being used by computing ed-
ucators?

• What issues do teachers and students face in adopting
and using SLCs?

1Appendix B provides the full list of SLC collected through
both surveys classified according to the dimensions of smart
learning content described in Section 2 as well as their ped-
agogical foundations discussed in Section 3.3.
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• What needs and visions do teachers and students have
when using SLCs?

The survey contained two parts: 1) Using smart content,
and 2) Visions and challenges. To structure both parts of
the survey we used simple categorization of SLC introduced
at the beginning of 2. The complete set of questions is pro-
vided in Appendix C. The survey was sent out to the mail-
ing lists of SIGCSE, csed-research, PPIG and Problets, as
well as to a number of other lists as well as known affiliates
and colleagues of the working group members. The SIGCSE
mailing list has over 1200 members, while the Problets mail-
ing list has over 400 members. Over a period of 10 days, 50
people answered the survey.

As the majority of systems gathered in the online survey
were time-tested systems that had been in use for multiple
years, the results of the online survey were complemented
with a review of the last two years of ITiCSE to provide a
view on recent advances in the development of SLC that have
not yet been adopted by the wider audience. We acknowl-
edge that a more complete literature survey would have been
a valuable contribution, but carrying out such an analysis
was unfortunately out scope of our resources, because the
number of technical tools published in, say last 10 years is
considerably large.

During the survey, in addition to outlining the state of the
art of smart learning content, more technical issues in host-
ing and adapting existing systems were gathered and dis-
cussed by the working group members. The main themes of
the issues are hosting and interoperability, and data collec-
tion and privacy. These themes are discussed in Sections 3.4
and3.5 that are written for more technically-oriented read-
ers.

3.2 Nature and Use of Existing Smart Learn-
ing Content

Figure 3 illustrates the responses for the types of CS-
specific SLCs educators had used since 2010:

0%	   10%	  20%	  30%	  40%	  50%	  60%	  70%	  80%	  90%	  100%	  

Something	  else	  

Problem-‐solving	  so=ware	  

SimulaAon	  tools	  

Programming	  tools	  

AutomaAc	  assessment	  tools	  

Program	  visualizaAons	  

Algorithm	  visualizaAons	  

required	  

suggested	  

tried	  

never	  

Figure 3: How different types of smart learning con-
tent are used by CS educators in their courses since
2010. Required label stands for teachers requiring
their students to use SLC, suggested for SLC being
encouraged to be used, tried indicates that a teacher
has tried the corresponding SLC type by himself and
never that a teacher has not tried anything like that
before.

Majority of the respondents have used smart learning con-
tent, e.g., tried them, used them in their courses in some
form, or suggested their students to use them. The survey
indicates that problem solving software (e.g., Problets [57,
58] and WadeIn [11]) as well as program visualization tools
(e.g., BlueJ [53] and jGRASP [20]) are the most used types
of smart learning content, with almost 50% of the educa-
tors requiring or suggesting these tools in their courses. The
least used smart learning content are simulation tools (e.g.,
TRAKLA2 [54] and UUhistle [82]). We acknowledge, how-
ever, that these results may be somewhat skewed due to
a low number of responses from a specific community; in
the survey, 51% of the respondents mentioned that they or
someone at their institution had developed at least parts of
a SLC.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Algorithm visualizations (n=23)	


Program visualizations (n=35)	


Automatic assessment (n=23)	


Programming tools  (n=28)	


Simulation tools (n=17)	


Problem-solving software  (n=25)	


Something else (n=21)	


Figure 4: SLCs developed locally versus elsewhere.
Black area indicates the portion of used SLCs de-
veloped locally, while the gray area indicates the
portion of used SLCs developed elsewhere.

Figure 4 outlines tool types that have been most broadly
adopted by other educators as well as tools that has been
mostly developed and used locally. The SLCs that are most
frequently used by educators but developed elsewhere in-
clude problem solving software, programming tools and pro-
gram visualizations tools, while simulation and automated
assessment tools were mostly used and developed in the same
place.

When asking for the kinds of SLCs that educators would
like to use in their courses, the most often listed SLCs were:

• Data and algorithm visualization, visual algorithm sim-
ulation for the languages Java and Python, as well as
line by line visualization (also known as code anima-
tion).

• Automatic assessment and automated grading as well
as self assessment for students.

• Interactive drill-like problems or small coding prob-
lems that can accept different answers.

• Peer programming and peer evaluation, for example,
collaborative programming through collaborative edi-
tors.

The respondents also often mentioned that they would like
to see additional features in existing SLCs (e.g., larger pro-
grams supported by CodingBat (http://codingbat.com/)),
and SLCs that adapt to the user’s knowledge or skill level.

In addition to the kinds of SLCs and SLC features that
instructors use or would like to use, the survey asked for
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reasons for using different kinds of smart learning content
in instructors’ courses. The more often mentioned purposes
included:

• Giving students the chance to organize their self-study
time.

• Flipping the classroom, i.e., the SLC would be used by
the students to prepare for the class, or to prepare for
a big closed lab project.

• Automated assessment and grading which would let
students submit their projects multiple times, learn
while debugging their code and improve their grade.
This was thought to be a fairer evaluation mechanism
in courses with hundreds of students where the learners
get evaluated by different TAs.

• Live-demonstrations during lecture.

To consider the current adoption and challenges and diffi-
culties in adopting SLCs, the survey participants were asked
to select challenges that they faced from a list. The re-
sponses are summarized in Figure 5.

Figure 5 shows that the top three difficulties were that (1)
respondents had problems finding SLCs that they could use;
(2) they couldn’t customize SLCs to fit their local needs and
(3) they couldn’t integrate the SLCs with other systems in
their institution (e.g., to store results in grade roster). In the
free-form category “Other”, the three most often mentioned
difficulties were usability issues, the time required to learn
how to appropriately use the SLC and the unwillingness to
use an SLC until its usefulness had been demonstrated.

Finally, participants were asked whether they had used
data collected by the SLCs, and if so, the purposes for which
they had used the data. Of the 34 who responded, 11 had
never used any data collected by SLCs – one used external
assessment to evaluate the effectiveness of an SLC whereas
another was pleasantly surprised at the prospect of being
able to use such data in the future. As to the purpose for
which adopters of SLCs used the data collected by the SLCs,
the top 3 purposes, according to the remaining 23 respon-
dents were:

• Assessment of students in the courses—e.g., course/lab
grade based on the data provided by the SLC: 8 re-
spondents (35%);

• Assessment of the course—what works, what does not,
and how the course could be improved: 7 respondents
(30%);

• Research—developers for improvement of the SLC, and
non-developers for longitudinal studies of their courses:
6 respondents (26%).

3.3 Categorization of SLCs
In the online survey, a total of 44 different systems were

mentioned, while a survey over the last two years of ITiCSE
mentioned an additional 17 systems. One of the systems
(GreedEx [89]) appeared in both surveys and was included
only once. A complete list of the 60 reported systems can
be found in Appendix B. This section attempts to provide a
brief analysis of these systems by categorizing then by their
pedagogical foundation and the classification introduced in
Section 2.

Pedagogical Foundations
When analyzing the systems mentioned both by the online
survey respondents and the systems recently published at
ITiCSE, a number of pedagogical foundations for the sys-
tems were identified.

• Active learning [6] is the foundation of SLCs that en-
gage students either in performing cognitive tasks, such
as coding the solution to an exercise, or playing roles
other than that of a student (also based on sociocul-
tural theory [91]), e.g., being the teacher who has to
assess fellow students’ solutions to an exercise. The
input to these systems is free-form.

• Collaborative learning [21] is the basis of SLCs that
provide users with environments that facilitate build-
ing collaborative solutions to problems. The input to
these systems is free-form.

• External representations [76] are the basis of SLCs that
present information to students in way that they can
better build their own correct mental models. Since
SLCs generate these external representations, they are
“fully computational”.

• Feedback [30] is provided by SLCs to help students
achieve their learning goal. Since SLCs generate feed-
back, they are “fully computational”.

• Individual differences theory [18] is the basis of adap-
tive systems that personalize content based on different
criteria. With individual differences the instruction
materials are adapted to students. Since SLCs per-
form the adaptation, they are “fully computational”,
with customized output.

We realized that Cognitive Load theory (CLT) [86] guided
the design of other SLCs as well. CLT is devoted to optimiz-
ing students’ mental performance. It differentiates among
three types of cognitive load: intrinsic, extraneous and ger-
mane. Extraneous cognitive load is generated by the manner
in which information is presented to learners and is under
the control of instructional designers. We have not used
in our classification because the border between being or
not being based on CLT is not totally clear. However, we
mention some systems that could represent the use of CLT,
in addition to those classified within the External Repre-
sentations category. On the one hand some SLCs provide
interfaces that allow students to focus their attention on
productive tasks, such as solving a problem, reflecting on
the solutions given by others, etc. Some examples could
be Cloudcoder (http://cloudcoder.org), BlueJ (http://
www.bluej.org), Piazza (https://piazza.com) and DrJava
(http://www.drjava.org). On the other hand, other SLCs
organize the educational environment presenting topics with
increasing complexity, e.g., DrRacket (http://racket-lang.
org).

Table 1 summarizes the pedagogical foundations of the
SLCs. The most common foundations are active learning,
external representations and feedback:

• Active learning is present in a large number of SLCs
(80.65%) including: algorithm and program visual-
ization, simulation, automatic assessment, coding and
problem solving.
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Figure 5: Difficulties and challenges adopting smart content reported by teachers sorted by how often they
were reported.

• External representations are the basis of 53.33% of
SLCs, most of them on algorithm and program visual-
ization or simulation.

• Providing feedback to the users is the basis of at least
45.16% of the SLCs. Most automatic assessment, cod-
ing and problem-solving tools provide feedback.

Pedagogical aspects # of SC % of SC
Active learning 50 80.65%
External representations 32 53.33%
Feedback 28 45.16%
Individual differences 9 14.52%
Collaborative learning 4 6.45%

Table 1: Pedagogial foundations of the combined
smart learning content

Dimensions of SLCs
All of the systems, both those suggested in the online sur-
vey and those found in recent literature, were categorised
according to the dimensions described in Section 2. The in-
tention of this is to give the reader a concrete understanding
of the dimensions, as well as to analyse the distribution of
current SLCs.

• 70.0% (42/60) of the SLCs are fully computational, ac-
cept free-form input and produce customized output.
A majority of the systems are dedicated to algorithm
and program visualization or simulation (e.g., [82, 89,
80, 3]), while the remaining SLCs are related to pro-
gramming, problem solving and automatic assessment
(e.g.,[24, 23, 22, 54, 93]).

• 11.7% (7/60) of the SLCs are not computational, ac-
cept free-form input and produce customized output,
e.g., the Matrix simulation framework [47].

• 10.0% (6/60) of the SLCs are fully computational, ac-
cept pre-specified input and produce generic output.

In this category, respondents often did not name con-
crete systems but described their use, which identified
the systems as simple program visualizations and al-
gorithm animations.

• 8.3% (5/60) of the SLCs are fully computational, ac-
cept pre-specified input, and produce customized out-
put, e.g., Problets [57] and JSAV [48].

To provide an overview of the categorization, the results
are also shown in Figure 6.

Figure 6: Combined Survey Classification Results

3.4 Current Architecture Solutions for Host-
ing

How an SLC is hosted can affect its adoptability and in-
teroperability. The level of support provided by the deliv-
ery platform can vary widely in terms of where the SLC is
fetched from and the kinds of SLCs and standards that are
supported. We have identified five levels of host support
based on the delivery platform’s technical architecture and
ability to serve SLCs:

At level 1 (the lowest level), the SLC is provided as a self-
contained and independent service. The delivery plat-
form is generic (e.g., the web) and does not integrate
the SLC. No authentication is provided. So, any data
collected during a session by the SLC is used by the
SLC for personalization only during that session. The
data is not stored between sessions to provide ongoing
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personalization or tracking of the user. In this sense,
this level is stateless.

At level 2 the delivery platform and the SLC are integrated
into a single system. The delivery platform provides
authentication and saves data produced by the SLC.
Data can then be used across sessions to track the
user and provide personalization across sessions. One
of the limitations of this level is that the delivery plat-
form does not support any external content—the SLC
must be developed directly for the platform. Exam-
ples of the systems at this level are CloudCoder [34],
Codecademy (http://codecademy.com), CodingBat (http:
//codingbat.com), CodeLab (http://www.turingscraft.
com), TRAKLA2 [54] and Web-CAT [24, 23, 22].

At level 3 the delivery platform supports multiple SLCs,
e.g., online MCQs along with program visualization.
However, the platform does not support external content—
all the content is internal or native to the platform.
Examples of level 3 systems are ViLLE (http://ville.
cs.utu.fi) and OpenDSA [28].

At level 4 , in addition to supporting multiple SLCs, the
delivery platform allows the use of external content by
supporting open but proprietary protocols. Examples
include Test My Code [90], A+[46], JavaGuide [36],
Database Exploratorium [14] based on the Adapt2 open
architecture [8], BlueJ or Moodle with plug-in sup-
port, and OpenEdX with its support for XBlock com-
ponents.

At level 5 the delivery platform uses standard protocols
(e.g., LTI) and hosts any SLC that uses standard pro-
tocols. Such a delivery platform is interchangeable
with other such delivery platforms, and can interop-
erate with similar delivery platforms.

Both the delivery platform and SLC are weakly coupled—
they use standard protocols (e.g., LTI), and an SLC
can be hosted on different platforms and a platform
can host different SLCs.

3.5 Data Collection and Usage
Most SLCs collect data. If stored, this data provides rich

opportunities for the SLCs and delivery platforms to facili-
tate learning, teaching and research. This section describes
the types of data traditionally collected by SLCs or their
delivery platforms and outlines a set of purposes for collect-
ing the data. It also briefly discusses the use of metadata
to describe smart content, which facilitates discoverability,
sharability, reuse and adoption of SLCs.

Collecting smart content usage data.
Data collected/stored by an SLC/delivery platform can be

at different levels of granularity, listed in increasing order by
size:

• Event-level: This data includes every mouse click, keystroke
and operation of a GUI widget.

• Activity-level: This data includes details of the ac-
tivity fostered by the SLC (e.g., solving a problem,
visualizing an algorithm), such as ‘problem started’,
‘problem attempted’, ‘answer submitted’, and ‘feed-
back read’.

• SLC-level: This data includes information about one
session with an SLC, e.g., time spent using the SLC,
aggregate performance on the SLC (number of prob-
lems solved, total score).

• Session-level: If the delivery platform is at levels 1 or
2 (described in Section 3.4), this is the same as SLC-
level. If the delivery platform is at levels 3 or up,
this data includes information about the various SLCs
launched and used during the session.

• Student-level: This is the aggregate of all the data
collected by the delivery platform for one student over
multiple sessions, and includes additional information
such as the name and demographics of the student.

Typically, the following relationship exists among the differ-
ent levels of granularity of data:

Activity-Level data ⊇ Σ Event-level data
SLC-Level data ⊇ Σ Activity-Level data
Session-Level data ⊇ Σ SLC-level data

Student-Level data ⊇ Σ Session-level data

Event-level data is the most detailed, and student-level
data is the most aggregate. Not every SLC and delivery
platform may want to or may be capable of collecting data
at all the above levels of granularity. SLCs should be able
to collect data at least at the activity-level, but collecting
event-level data within individual activities could improve
the interpretation of learning outcomes. Analysis of the data
must be carried out at the appropriate level of granularity:

• Event-level data can be used for data mining and learn-
ing analytics to infer learning-related parameters, pat-
terns and episodes.

• Activity-level data is useful for item analysis, which is
of interest to developers.

• SLC-level and session-level data is of interest to edu-
cators who want a report of class usage.

• Student-level data would constitute an electronic port-
folio of the student’s learning and would be of interest
to both learners and teachers.

In a typical session, data at the above levels of granularity
may be collected interspersed, as shown in Figure 7, where
student-level (logging in), activity-level and event-level data
are collected intermingled.

Delivery platforms at levels 2 and up (described in Section
3.4) save the collected data for reuse in future sessions. They
may do so in one of two ways:

• Locally, using their own student model;

• On a third-party student model server, such as CU-
MULATE [13, 92] or Personis [49].

They may also archive the data for use by third-party learn-
ing analytics researchers. Some archiving options include
TLA’s Learning Record Store [60] and DataShop [52].
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Figure 7: Content processing

Use of the data collected by SLCs.
The data collected by SLCs could be used for various pur-

poses:

• By the instructor to 1) award students course credit
for using the SLC; 2) learn about the concepts not
well/yet understood by the students, and address them
in subsequent classes; and 3) identify students in need
of help.

• By the students to 1) track their progress; and 2) com-
pare their performance against those of their peers.

• By authors of SLCs to 1) evaluate and improve the
quality of the content and feedback presented by the
SLC; and 2) evaluate the effectiveness of the SLC at
helping students learn.

• By the SLCs themselves to 1) customize content and
feedback to the needs of the learner; and 2) crowd-
source generation of new content and effective feed-
back.

• By learning (analytics) researchers to 1) discover im-
portant learning episodes and phenomena (e.g., mo-
ment of learning, gaming the system, etc.); 2) get bet-
ter understanding of learner characteristics; and 3) un-
derstand the features that make the SLCs effective.

It should be noted that aggregation of data from individ-
ual SLCs within a single data repository (either on the de-
livery platform or a third-party student model server) would
provide added value to all concerned—teachers and students
would receive more comprehensive reports, SLCs could bet-
ter customize their content based on learner’s interaction
with other SLCs, and researchers would be able to use larger,
cross-validated data sets with which to carry out data min-
ing and learning analytic research.

Metadata to describe SLCs.
Metadata is used to promote integration and interoper-

ability of SLCs, i.e., move delivery platform from level 1 to-
wards level 5 (as described in Section 3.4). Typically, meta-
data includes descriptive data used for cataloguing (e.g., au-
thor, date of creation), pedagogical characteristics (e.g., dif-
ficulty, interactivity), and semantic information (e.g., the

concept(s), skill(s) or competency(ies) the SLC helps to ac-
quire). Metadata is often referred to as content model and
does not exist as a separate document, but rather is built
into the architecture of the SLC itself. Typically, it is open-
access, machine-readable and standardized.

Metadata facilitates automatic discovery and integration
of SLCs. Although current practices suffer from problems
such as incompleteness and fragmentation of metadata stan-
dards, once these problems have been solved, metadata has
the potential for increasing adoption and reuse of SLCs—
delivery platforms will be able to automatically discover
SLCs and offer them to learners when needed.

Availability of metadata is also crucial for customization
of content presented to the learner—it helps the delivery
platform decide how an SLC or the learner’s interaction with
it should be tailored to optimize the learning process.

4. INTEGRATING SLCS
There are many factors influencing the adoption of tech-

nology: technical, social, ease of use, and cost, to name a
few. In this section we will focus on a problem that affects
the adoption of SLCs even by their biggest proponents: the
lack of integration of SLCs. The discussion in this section
informs that of the next in which we propose a prototype ar-
chitecture as well as that of the subsequent section in which
we evaluate the proposal. As mentioned in the introduction,
both sections target the readers who have a technical inter-
est in developing and integrating smart learning content.

Respondents to our survey identified the following three
difficulties of adoption of SLCs the most (see the Figure 5
in Section 3):

• Problems finding SLCs they could use;

• Customizing SLCs to fit their local needs; and

• Inability to integrate the SLC with other systems.

Some other notable responses were about usability—“If
an SLC doesn’t have an incredibly intuitive interface, it will
not get adopted”—and the (mis)match between the SLC
and teachers’ needs—“Content in many SLC’s don’t match
what/how we teach”, and“nothing fits the pedagogy/curricular
structure I have, so reuse is hard”.
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4.1 Technical Integration

Monolithic Systems
In the current landscape, an SLC is often a monolithic sys-
tem. The challenge of integration begins with features as
mundane as that of requiring separate logins. In some in-
stances, this may require the instructors to create accounts
for their students, posing a high barrier for adoption. Of-
ten, monolithic systems do not communicate back to the
launching system (e.g., an LMS) or they do not communi-
cate with each other. In some instances, an SLC is installed
as a stand-alone desktop application.

A further challenge is the granularity of accessing an SLC.
Often it is an all or nothing approach, one that does not al-
low the instructor to point directly to the desired materials.
In this environment, integration many times takes the form
of a simple table of contents linking to different SLC sites.
While such an approach offers access to desired materials, it
lacks finesse and makes it hard to configure a course to the
instructor’s needs and to personalize contents to a student’s
needs.

Our survey respondents expressed concern about the ease
of management of student records. “Student management
for some of these programs is also a problem. Moodle allows
for download of the student records so that management is
easier. The csv file can be imported into excel and edited
there.” “The SLCs that I have used all require manual up-
loading of data into the course management system. This
gets rough on the TAs when there are 150+ students in the
course and this is not their only duty. Also, there are lots of
problems with students doing stupid things (like not putting
in their names–or using a nickname that is different than
their real name). And very few of these systems have space
for a student ID #, that would help to solve these problems.”

This addresses a third and perhaps most critical challenge
for an integrated system: accessing data from all the SLCs
in one place. This feature offers the following advantages:

• An efficient way to get basic feedback, such as assign-
ment scores into the course gradebook.

• A more holistic and complete view of the student’s
progress.

• Combined logging of data that facilitates research about
the usefulness of a particular tool in a course.

In regards to the last item, some teachers are not sure
about the value of SLC. “I would like to see statistically val-
idated research that shows that SLCs work better than other
approaches before I consider using them”. Hopefully, re-
search on the effectiveness of SLCs will convince instructors
of their usefulness.

Integrating SLCs
In the prior section, we argued in favor of integrating multi-
ple SLCs within a single delivery platform. In this section,
we will highlight the challenges in integrating SLCs.

There is currently no standard protocol for interacting
with SLCs. This in itself tends to perpetuate the creation
of monolithic systems. Furthermore, monolithic systems are
typically produced and consumed locally. As such, they may
not be designed to be integrated with other environments.

Issues of intellectual property rights and credits are straight-
forward in a monolithic system, but must be carefully ad-
dressed in a shared environment. In this context, if an SLC
is not free, then piecemeal pricing at various levels of gran-
ularity should be made available. Then again, paying for an
SLC may itself be the problem—to quote some of the respon-
dents to our survey: “My school doesn’t want to pay for any
SLCs” “Can no longer require students to pay for anything
other than textbook so SLC must be free for them to use”.
Monolithic systems use their own layout and terminology.
The terminology may work well for their intended local use.
However, it may introduce conflict or at least confusion when
integrated with other SLCs. Differences in the user inter-
faces of different SLCs will likely make navigation hard and
may additionally pose problems for students with particular
learning disabilities. In general, the ability to configure the
user interface of SLCs is desirable. If an instructor wishes
to modify the content of an SLC, an appropriate authoring
tool must be provided by the developer of the SLC, along
with documentation on how to use it. The SLC would nec-
essarily have to save and retrieve such customized content
from a centralized repository. However, this would result
in “crowd-sourcing” content, enriching the SLC, making its
adoption more attractive to other users, and creating a com-
munity of users in the process, along with the motivational
benefits that such communities afford. An instructor may
wish to know about the usefulness or popularity of a given
SLC. So, developing a social network of users, and posting
ratings and learner feedback may all promote adoption and
use.

Data and Its Collection
Finally, the question arises as to the ownership and use of
data collected by an SLC. Any data that is made publicly
available for use by third parties must be stripped of iden-
tifying information to stay in compliance with privacy laws
and IRB policies. Nevertheless, there is a desire in learning
research community to make data collected by SLCs avail-
able so that third parties can validate research results of the
SLC and/or conduct their own research.

4.2 Conceptual Integration
Hurdles which potentially preclude the inclusion of a par-

ticular SLC into a course include:

• The use of different standards, e.g., some educators use
only int and double data types whereas others embrace
the whole range of data types in Java/C++

• The use of notations and terminologies, e.g., on bal-
anced binary search trees, one and the same rotation
may be called “single rotation on the left sub-tree” by
some authors and “single right rotation” by others.

• Examples written in different programming languages,
e.g., Java and C++.

• Components authored in a different natural languages,
e.g, code animation tools written in English versus
Spanish.

To streamline course pedagogy, educators may want to
customize an SLC with the specific notation they use in
class, so as to be consistent with their lectures and/or across
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the SLCs they use in the course. They may also want to
substitute local vernacular for concepts covered in the SLC
(e.g., ‘modulus’ versus ‘remainder’ operator). SLCs should
provide facilities for such customization, either through con-
figuration variables or command-line arguments.

From a student’s perspective, adaptation of an SLCs may
mean catering to one or more of the following:

• A specific level of Bloom’s taxonomy [5], e.g., synthe-
sizing/writing a for loop versus analyzing the behavior
of a for loop.

• A specific learning outcome.

• A specific learning style, e.g., verbal versus visual learn-
ers and sequential versus global learners in Felderman
and Silverman Learning Style Inventory [27].

In order to facilitate such adaptation, either SLCs or the
activities within them should be annotated with the level of
Bloom’s taxonomy, the specific learning style, content topics
covered, etc.

The survey respondents noted that too much time was re-
quired to learn how to appropriately use an SLC: “It takes
too long to figure out how to use the SLCs”, “Time invest-
ment to learn and integrate SLC is too high”, “Find the time
to learn the tools myself, and make appropriate adjustments
to existing course”, “Just haven’t had time to explore and
learn and develop.” This is a very good argument in sup-
port of seamless integration of various SLCs wherein they
all share the same user interface, and present the collected
data using comparable ontology, granularity and format.

4.3 Delivery Integration
The advent of the Web simplified the delivery of SLCs—

educators no longer had to download and install SLCs in
order to use them. Networked languages such as Java sim-
plified the production of SLCs—authors of SLCs could im-
plement them once and have them run on a multitude of
client hardware/software environments. Unfortunately, this
SLC utopia lasted less than a decade—both production and
use of SLCs are fragmenting again.

Users of SLCs are increasingly migrating from personal
computers towards tablets and smartphones, which do not
support the Write-Once-Run-Many models of personal com-
puters (e.g., Java applets). The technology that runs on
both personal computers and handhelds (HTML 5) is con-
stantly evolving, miring authors in a continual cycle of rewrit-
ing their SLCs. The rapid change in the landscape of im-
plementation of SLCs has meant many high quality legacy
SLCs are falling into disuse prematurely. These develop-
ments pose a significant obstacle to integration, interoper-
ability and reuse of SLCs, especially those developed by dif-
ferent authors. Unfortunately, this problem is not expected
to find a resolution anytime soon, if at all.

5. A PROTOTYPE ARCHITECTURE FOR
INTEGRATING SMART LEARNING CON-
TENT

5.1 Proposed Architecture: The Core
In this section, we propose an open architecture that sup-

ports integration of SLCs into delivery platforms. The pro-
posal is based on our analysis of stakeholders’ needs, existing

solutions and best practices. It was designed with multiple
objectives in mind:

• To lower adoption barriers for smart content by en-
abling teachers to integrate multiple SLCs within their
courses in accordance with their preferred way of teach-
ing.

• To provide for finer-level personalization by adapting
the delivery and usage of smart content to the current
knowledge and skills of individual students.

• To address the issues of content discoverability, and
community-of-practice support.

The architecture is based on three principal ideas: flexible
reuse of SLC, flexible course organization, and flexible data
collection, which have been accepted as best practices in the
field. This flexibility is supported by decomposing the crit-
ical functionalities that have to be implemented to support
the use of SLC into three layers: the delivery layer, the ap-
plication layer, and the data layer (Figure 8). The delivery
layer is formed by various student-facing delivery platforms.
The application layer is composed of multiple SLC servers
that deliver various kinds of SLC. The data layer hosts all
kinds of Learning Record Storage systems that collect and
store information about students’ work. The reasons for
this decomposition, the nature of the component forming
each layer, and the communication between these layers are
explained below.

Flexible Reuse of Smart Learning Content
Flexible reuse of SLC is supported by the separation of deliv-
ery platforms and SLC servers, which breaks the currently
predominant encapsulation of SLC in standalone systems.
By delivery platforms, we mean course management sys-
tems, learning management systems, MOOC platforms, or
other course delivery mechanisms that are intended to be
the student-facing access points for course learning mate-
rials. Typical SLCs are implemented independent of such
delivery platforms at present, and instead take the form of
stand-alone systems that provide their own student-facing
entry points or front pages.

To increase the reusability of SLC, it should not be encap-
sulated in a single stand-alone system, but instead should
focus on supporting embedded use within existing deliv-
ery platforms–in effect, being hosted on independent SLC
servers. Each SLC server should be able to host multiple
SLCs and be able to deliver any item by request to a delivery
platform. The separation of SLC servers from delivery plat-
forms should be based on a standardized communication in-
terface. The interface should allow any delivery platform to
launch any individual SLC directly from any content server
and receive back information about user’s performance with
the SLC.

More specifically, a delivery platform should be able to get
sufficient information to launch an SLC (a reference to a spe-
cific SLC on a specific SLC server) while passing two essen-
tial parameters—the identity of the individual user and the
identity of a specific LRS system. In addition, the commu-
nication protocol should allow a richer context in the form
of name-value parameters to be passed from the delivery
platform to the SLC, This information could be used to cus-
tomize the delivered SLC (e.g., communication language)
or passed to the LRS system for storage (e.g., information
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about a class, a specific learning treatment, etc.). Once the
user completed the work with SLC, the delivery platform
should receive some some summative information about the
results of this work that is most important for the delivery
platform to operate: success, completion level, or perfor-
mance score.

Flexible Course Authoring
Flexible authoring supports instructors in customizing SLC
and organizing it in a way that fits the structure of their
course or preferred way of teaching. We distinguish two lev-
els of authoring support: content-level authoring and course-
level authoring. Content-level authoring support allows in-
structors to extend the volume of SLC by adding new con-
tent, as well as cloning and editing existing items of an
SLC. We expect that content-level authoring features are
tightly coupled with the nature of a particular SLC, and thus
will most likely be supported through an authoring interface
hosted by individual SLC servers. Course-level authoring, on
the other hand, should allow instructors to organize SLCs of
multiple types that they want to use in their courses in a way
that supports the unique needs of a course. Existing course
delivery platforms most frequently use a common approach
to organizing course materials, defining a course structure
as a sequence of units (topics, lectures, course weeks) where
each unit provides access to a collection (or a sequence) of
educational content items of different kinds that support
mastering this unit. This kind of course structuring can ac-
commodate embedding SLC activities as long as any SLC
from any SLC server could be added/inserted/embedded to
any unit within a course structure. Given the popularity
and the common acceptance of this approach, we suggest it
as the main approach to flexible course-level authoring with
SLC. The standardization of the proposed two-level course
structures with smart content references could turn course
structures into reusable assets making it easier to store and
clone course structures as well as ensuring the ability to use
the same course structure on multiple delivery platforms.

The proposed flexible course authoring could be easily
supported by in any delivery platform that can reference
SLC. At the same time, it could be wise to separate flex-
ible course authoring from delivery platforms and provide
a community-of-practice portal for course-level authoring.
This platform could collect and propagate community wis-
dom in course organization. With a community-of-practice
portal, building a new course structure from scratch will not
be the only approach to create a course with SLC. Instead,
one of the existing well-designed structures could be cloned
and edited for further customization. For example, we envi-
sion a number of exemplary course structures complete with
links to various SLCs that support a specific programming
textbook. Faculty who choose to adopt this book for his
or her course could also adopt the whole course structure
and have a course with SLC ready for delivery with minimal
efforts.

Finally, while we propose a lightweight standard for rep-
resenting and sharing SLC-based course structures, it is clear
that no single course authoring approach, even flexible, would
satisfy all the teachers who are interested in using SLCs. For
example, it is quite common nowadays to organize course
content as an online book with smooth narration and links
to interactive content embedded into the book structure [55].
However, the separation of SLCs from delivery platforms can

benefit any course organization approach. An easy way to
combine any desired course-level authoring approach with
SLC reuse organization would be to create a proprietary de-
livery platform that supports SLC inclusion standards and
allows publishing multiple courses in the same desired for-
mat. A good example of such platform is Open DSA [28],
a platform that allows creating textbook-organized courses
that embed SLCs. A more challenging approach is to create
a specialized standard for the desired course organization
(such as a textbook) and ensure that this standard is sup-
ported by several delivery platform just as a hierarchical
folder-based standard organization is supported by almost
any modern delivery platform.

Flexible Data Collection
Flexible data collection facilitates the collection of data about
learners by SLCs. The majority of delivery platforms were
created with plain static content in mind and were engi-
neered to collect minimalistic information about user learn-
ing, i.e., the fact that a content item has been accessed and,
for assessment items, the correctness and score. In contrast,
smart content typically engages user in interactive work and
can produce a much richer trace. This trace is important
for learning analytics and personalization needs, but learn-
ing platforms have no space to store it. Moreover, for the
case of smart learning content that could be used by many
delivery platforms, encapsulating learner data inside specific
learning platforms limits the ability to learn about the users
and the content.

To address this problem, we propose independent learn-
ing record storage (LRS) systems to facilitate data collec-
tion by SLCs. The idea of an independent component for
collecting user data has been already explored in the field of
adaptive educational systems (where it is known as student
model or user model servers) [92, 49] and learning analytics
systems [88]. It has also been advocated by Advanced Dis-
tributed Learning group (ADL) as a part of their new Train-
ing and Learning architecture (TLA, http://www.adlnet.
gov/tla/). LRS systems should support a standard data
reporting protocol to collect data as well as standard data
access protocol. Thereafter, any standards-compliant LRS
system will work with any SLC or SLC server. A specific
LRS server should be selected within the delivery platform.
A delivery platform might suggest or mandate a default LRS
system. However, the open architecture also allows a teacher
to select the preferred LRS system for his or her class or al-
low students working with a course outside of any class to
select a specific LRS system for aggregating all their learn-
ing data. In any case, the information of the selected LRS
system should be passed by the delivery platform to each
SLC or SLC server to ensure that all learner data flows to
the same storage.

A smart content item should be able to send a rich flow
of information with details about each critical pedagogical
event to the selected LRS system. The information passed
about each event should be standard by its form while being
specific in its semantics for different types of smart content.
It should be extended with context parameters passed from
the delivery platform. The level of detail for reporting user
experience could be decided by the smart content server, but
it should be creating a sufficiently rich trace for the purpose
of learning analytics, user modeling, or data mining. These
kinds of systems can be considered as clients of the LRS
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Figure 8: A three-tier architecture for integrating SLCs into delivery platforms.

system and should be able to request information from it
using a query protocol. A critical part of client to LRS sys-
tem communication is reliable access control that can ensure
privacy of data.

5.2 Addressing Discoverability in the Proposed
Architecture

Discoverability of SLCs emerged as the top concern in
the online survey reported in Section 3. The discoverability
issue has the same roots as the integration problem: due
to the unique nature of SLC, individual SLC items (e.g.,
individual activities, lessons, or exercises within one SLC
system) cannot be easily collected in learning repositories or
indexed by search engines. As the review of the field shows,
the majority of SLCs are standalone systems. As a result,
searching the Web or browsing repositories at best leads one
to an SLC as a whole, and not to its constituent activities
or components. So, even after discovering a promising SLC,
potential adopters have to invest considerable time exploring
it and evaluating its appropriateness.

This suggests the need for SLC discovery tools that imple-
ment the SLC connection interfaces suggested for delivery
platforms. A discovery tool of this kind would make all
smart content items on all servers known to be discoverable
to users through search and browsing, while also allowing
users to immediately launch and try any discovered item.

To support such discovery tools, SLC authors can provide

a mechanism for indexing every SLC item with both key-
words and metadata, so that this information can be pub-
lished in a machine-readable format. Next, the architecture
can be extended with an additional standard communication
interface that we call a content brokering interface. This in-
terface would allow SLC discovery tools to both discover and
request specific content on any SLC server—either a single
item, or the full list from that SLC. Any learning reposi-
tory that supports this interface will immediately get access
to all content on any registered or discovered SLC or SLC
server (see Figure 9). Finally, content brokering can also be
embedded into course authoring tools to facilitate incorpo-
rating SLC items (and not just SLCs) into a course.

Since it might be hard to affect the process of course au-
thoring on multiple delivery platforms, an easiest way to
achieve this goal is to create a delivery-platform-independent
“smart course” authoring tool that allow authors to search
for proper smart content and embed it in parallel with defin-
ing course structure. Once the structure is created, it could
be packaged into a standard format and uploaded to a de-
livery platform of choice. An authoring-focused component
that integrates course structures from multiple authors re-
gardless of the platform they use for delivery opens en-
hanced opportunities to support communities of practice
and teacher-oriented personalization. An example of teacher-
oriented personalization that could be embedded into an au-
thoring tool is item recommendation based on collaborative
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filtering. Collaborative filtering may identify relevant learn-
ing units in different courses on the basis of their usage in
other courses and cross-recommend most successful and use-
ful items.

Figure 9: Our architecture makes access to smart
content transparent for both discoverability and
reuse.

5.3 Provision for Personalization Support
While personalized and adaptive learning has not been ex-

plicitly included in survey questions, respondents mentioned
it among the desired features of SLCs. Provision for person-
alization has been embedded in the proposed architecture
through the event-reporting interface. This arrangement
ensures that critical information about learners’ activities
is collected, while being free from its usual captivity inside
various delivery platforms and SLCs. Thus, learning records
could be used by any component of the proposed architec-
ture as long as access rights and privacy rules are observed.
The information about student activities stored in an LRS
system could be used to determine his or her current level
of knowledge. In turn, this information could be used by
any other component to adapt to individual users. For ex-
ample, a delivery platform could use adaptive hypermedia
technology [9] or collaborative filtering technology [77] to
guide students to most appropriate SLC item. This person-
alization will break the static linear content browsing ap-
proach, thereby offering efficient personalized learning path
through SLC content for each student. SLC servers could
also use information about learner’s knowledge to adapt the
work of its SLCs to individual students, for example, offering
adaptive program visualization [11].

Learner modeling is a challenging task that can be pro-
hibitively expensive for SLC systems to implement from
scratch. To avoid re-implementing this core feature in sep-
arate SLC systems, we recommend implementing learner
modeling functionality as a separate component type in the
architecture, which we call learner modeling server. This
approach fits much better to the distributed nature of the
proposed architecture and replicates a popular approach in
the field of user modeling where a user modeling component
or server is frequently separated from applications that rely
on its functionality. As mentioned above, several user mod-
eling servers such as Personis [49] and CUMULATE [92]

have been predominantly used for learner modeling in an
educational context. In the context of our architecture, the
goal of a user modeling server is to process a flow of infor-
mation about learner actions and achievements into a set
of parameters that define current knowledge, interests, and
behavior parameters. This information could be requested
by any authorized component that needs to adapt to an in-
dividual student. Note that the architecture allows many
learner modeling servers to work in parallel and compete
in terms of reliability and quality of modeling. A compo-
nent that wants to deliver personalization needs to pick a
preferred server and to authorize it to access learner data.

The most challenging part of learner modeling is estimat-
ing a learner’s level of knowledge. Some simple knowledge
modeling could be implemented just by taking into account
the amount of work and the context (i.e., course topic)
passed to the LRS server. However, a more advanced model
that is essential for finer-grained adaptation should be based
on some competency model in the domain that is usually de-
fined as a level of achievement in a taxonomy or ontology of
skills and concepts. These kinds of ontologies have already
been created and used for adaptation in the domains of C
programming [84], Databases [83] and Java programming
[10].

Competency-level adaptation requires any activity done
by the user to be associated with ontology competencies.
One way to assure this is to pass information about compe-
tencies applied or tested along with the pedagogical event
record. An easier way, however, is to associate every SLC
item with a set of competencies that the learner can practice
or test while working in this item. In this case, the compe-
tencies associated with a SLC items could be stored as a part
of content-level metadata and provided by the content server
through content brokering interface by request. Merging
this metadata information with the flow of events recorded
by the LRS server, a learner modeling server could create a
fine-grained picture of user knowledge. This approach has
already been used by such servers as CUMULATE [92].

5.4 Pragmatic Vision: Using Existing Proto-
cols and Standards to Provide a Near-term
Solution for SLC Integration

The previous sections proposed an open architecture (Fig-
ure 8) based on standard protocols for communication be-
tween the delivery platform, SLC server, and an LRS sys-
tem. It also discussed course re-use based on standardized
course structures. This proposal was based on needs analysis
while mostly ignoring existing standardization attempts. In
this section, we propose an expedient architecture that uses
existing protocols for communication between the delivery
platform, SLC server and LRS. While this architecture may
not meet all the needs of SLCs, it has the advantage of being
immediately achievable, helping to meet current needs while
researchers work toward a more ideal solution.

A Pragmatic Approach to Implementing the Embed-
ding Protocol
If SLC developers want their work to be embeddable into
existing delivery platforms, it is necessary to use existing
embedding protocols or APIs that are supported by cur-
rent technology. While many platforms support their own
custom embedding approaches (e.g., Moodle’s plugins, or
edX’s XBlocks), the most widely supported standard cur-
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rently available for embedding learning resources in delivery
platforms is the Learning Tools Interoperability standard
(LTI v2.0, http://www.imsglobal.org/LTI/). Most major
delivery platforms support the use of LTI-compliant tools,
including Blackboard, Moodle, Canvas, Desire2Learn, Sakai
and edX.

Because of the broad existing support for LTI by deliv-
ery platforms, it is an ideal target for near-term use by SLC
developers until a more comprehensive embedding standard
evolves. Unfortunately, providing an LTI-compliant inter-
face for existing SLCs can be a significant challenge. The
standard is detailed and includes coverage of many features
that may not apply to specific SLCs. Implementing an LTI-
compliant interface may be costly.

As an alternative, a promising near-term solution may
be the implementation of an LTI-compliant “adapter” that
provides a cleaner, lighter-weight API for communicating
with the most common class of existing SLC services. Such
an adapter could be used as a simple repackaging mecha-
nism to add LTI-compliance to any SLC service, allowing it
to be embedded in current delivery platforms that support
LTI. Such an LTI-compliant adapter could dramatically re-
duce the cost of providing LTI support for SLC developers,
while also opening up a wide variety of delivery and integra-
tion options with off-the-shelf software. We believe that this
approach is the most promising near-term solution, until a
more expansive embedding protocol or API can be devel-
oped that more completely meets the needs of SLC services.

A Pragmatic Approach to Implementing the Data Stor-
age Protocol
In current practice, most existing SLCs provide their own
data storage, using custom data models. For near-term use,
continuing this practice is a viable choice.

At the same time, however, there is growing recognition
that there are benefits to be gained by storing data in a
separate (possibly shared) location. Started in the work on
learner modeling and learning analytics, this approach has
been popularized by ADL Experience API, or xAPI (http:
//www.adlnet.gov/tla/experience-api/, formerly known
as the Tin Can API, http://tincanapi.com), which is a
recently developed specification aimed at allowing SLCs to
store data in a standardized format in a learning record store
(LRS). One SLC may store data in multiple learning record
stores, and a learning record store may receive data from
multiple SLCs, and may even exchange data with other
stores. xAPI allows independent development of learning
analytics software or data analysis techniques that can be
applied across data collected from multiple SLCs.

Although the xAPI is relatively new, client libraries are
available for Javascript, Java, PHP, Objective-C, and .NET
that developers can use to incorporate the protocol into their
SLC (http://tincanapi.com/page-developers/). So, it is
the most expedient option for SLC developers who are look-
ing to migrate from self-contained data storage to using in-
dependent learning record storage services.

A Pragmatic Approach to Implementing Course Re-use
Standards
While re-usability of SLC-based course structures has not
been addressed by existing standards, re-usability of tradi-
tional courses has been extensively explored. As a results,
a very small extension of existing tools and standards can

resolve most of the problems in SLC course-level re-use. A
possible solution could be to represent a link to an SLC
item as a specialized URL leaving the proper resolution of
the link to the delivery platform will enable the use of exist-
ing authoring tools and standards. For example, SCORM-
compliant authoring tools originally aimed at helping educa-
tors package up course materials for transportability among
learning management systems may be leveraged to create
SLC-enabled courses. Moreover, content reusability stan-
dards such as SCORM (http://www.adlnet.gov/scorm/)
content packaging or IMS Common Cartridge (http://www.
imsglobal.org/cc/) that are typically supported by exist-
ing authoring tools could help in transferring a course struc-
ture with references to smart content to a number of different
delivery platforms.

5.5 Supporting a Community of Practice
In addition to the technical issues that often obstruct

adoption of SLCs, there are also non-technical obstacles to
overcome. Providing the necessary community support to
foster adoption should be taken seriously by all developers
of SLCs. Some of the early activities typically carried out by
SLC developers to foster a community of users include offer-
ing introductory workshops or tutorials to introduce others
to their SLC; and providing online resources such as web
sites, forums, or mailing lists to help new users connect with
each other. While these steps are certainly necessary, foster-
ing an active community often requires significantly greater
investment. In this section, we list additional non-technical
strategies that SLC developers could use to create and grow
a more cohesive community of practice centered around their
SLC.

Adopt a marketing plan.
Marketing is essential for developing and maintaining a

community of practice. Developers of SLCs often know little
about marketing and have even less affinity for its practices.
So, they do not pay much attention to marketing their SLC.
Marketing does not have to mean spending money to hire
a marketing specialist, or even developing a full-blown mar-
keting plan. It could be as simple as developing a thumbnail
marketing plan, implementing it and continually revisiting
it as SLC project matures.

Act as a technology evangelist.
A technology evangelist takes personal responsibility for

continually promoting an SLC, its effectiveness, and its user
base. Identifying one or more evangelists can be a critical
element of a project’s marketing plan. Some of the best
evangelists are current users of the SLC who can speak with
experience and authority about the usefulness and effective-
ness of the SLC.

Plan for longevity.
Many academic research projects have short lifespans be-

cause they are primarily tied to short-term research funding.
The authors are perfectly willing to share their work, but
may offer little or no support, little or no active promotion
or marketing, and no new features or enhancements once
the short-term funding is exhausted. Since dissemination
and adoption of an SLC takes time, cessation of support
may come at about the same time an SLC project begins
to see adoption and active use. This will preempt or sig-
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nificantly dampen adoption of the SLC. To build a strong
user community, it is necessary for a project team to adopt a
long-term plan for continued development, ongoing support,
and engagement of evangelists.

Streamline installation and setup.
Many academic research projects focus mainly on inter-

nal or local use of an SLC, primarily for the purposes of
research evaluation and paper publication, with somewhat
less of a focus on minimizing adoption barriers at other in-
stitutions and providing adopter support. One area where
this becomes apparent is in the installation or setup process
for an SLC: the more streamlined and less burdensome the
process (e.g., no unnecessary steps, external dependencies,
or prerequisite knowledge needed), the greater the chances
of adoption and use.

Establish a brand identity.
While branding is an essential part of any commercial

marketing plan, it is not considered seriously by many aca-
demic researchers. However, developing a brand identity is
a powerful marketing tool—it makes the SLC more recog-
nizable; makes it more easily searchable on the web; and
makes all the dissemination, training, and community de-
velopment efforts instantly recognizable. Branding can start
with the most obvious steps: a project logo, a dedicated do-
main name, and a tag line for use on the web site and in
product literature. How much further to take branding is a
matter of choice and available resources, but could include
conference sponsorships, brand-emblazoned giveaways, etc.

Tie in with mainstream course resources, like a specific
textbook.

Developing synergistic relationships with mainstream learn-
ing resources (e.g., textbooks, classroom technologies) would
provide significant dissemination and adoption leverage. It
could ease adoption through piggybacking, and gain follow-
ing by adding value to widely used mainstream learning re-
sources.

By using some or all of these strategies, developers of SLCs
can position themselves to be much more successful at dis-
semination than purely academic research projects. These
strategies will lead to wider dissemination and use, and help
build a community of practice around an SLC. A larger and
stronger user community will in turn contribute to ongoing
improvements of the SLC and make its dissemination self-
sustaining.

6. SUMMARY AND DISCUSSION
In this paper, we have analyzed the field of smart learning

content (SLC) for computing education. We set out to inves-
tigate the challenges associated with using, authoring, and
developing SLCs, as well as related software support. We
planned to discuss problems that inhibit adopting, sharing
and customizing such content, and propose new technical
solutions to overcome the challenges.

Our investigation led us to propose a definition of smart
learning content (SLC) as being on a continuum along three
axes: input, processing, and output. We used this definition
in subsequent sections to categorize instances of SLCs that
we identified from our literature survey and from educators
through an online survey.

Next, based on our online survey of computer science ed-
ucators, we summarized the types of SLCs used most fre-
quently by instructors, problems educators have with adopt-
ing and using SLCs, and how educators typically integrate
SLCs into their courses. We also assembled a list of SLCs
mentioned by the respondents and then augmented it through
our literature review to identify recently used SLCs. The
collected SLCs were classified along the three axes of our
definition.

In addition, we proposed a classification of architectures
for hosting smart content based on the level of coupling be-
tween SLCs and their delivery platforms. Further, we pro-
posed a categorization of the data collected by SLCs, ac-
cording to the level of their granularity, and identified the
purposes for which data at each level are used by various
actors.

Next, we identified obstacles to integration and interop-
erability of SLCs, listed the advantages of integrating SLCs
for various actors including teachers and students, and dis-
cussed the issues of conceptual integration, and problems
with technological integration of delivery. This resulted in a
proposal for an architecture that supports flexible reuse of
SLCs, flexible course authoring, and flexible data collection,
all of which are driven by considerations of loose coupling
and reuse. We also addressed possible approaches to im-
plement content discovery and personalization in this archi-
tecture. We proposed an ideal vision for embedding SLCs
and storing data collected by them using new standards and
protocols, followed by a pragmatic vision for achieving these
goals based on existing, albeit imperfect, standards and pro-
tocols. Both visions are geared towards increasing the avail-
ability and adoption of SLCs. We also addressed the steps
that can be taken to build a community of practice around
an SLC.

6.1 Limitations
Our report has several limitations. To start with, we

should acknowledge a relatively limited scope of the SLC
review that served as the basis for categorizing pedagogical
and technical aspects of SLCs. The scope of the review was
defined by the timeframe of our working group. A more
thorough review of the field would be a helpful addition as
part of future work. At the same time, we believe that us-
ing a combination of the most popular and the most recent
SLC systems helped to distill the most essential features
and problems of modern SLCs in the field of computing.
We also hope that several categorizations of SLCs proposed
in the report will help in the future attempts to analyze this
field.

More broadly, it also is important to note that our report
has been deliberately focused on technical issues preventing
wider use of SLCs. However, these are not the only bar-
riers. Socio-cultural issues also play an important role in
propagating SLC use and a review of these issues also would
be valuable. Or report only examines a small number of
these socio-cultural issues (such as community of practice).
A broader set of these issues has been examined in prior
work that is reviewed in the next subsection. However, a
full survey remains as future work.

6.2 Comparison with Prior Work
Many researchers have been working on different aspects

of SLC creation and adoption. Many surveys covering spe-
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cific areas of SLCs, such as algorithm visualization [78], pro-
gram visualization [81], and automatic program assessment
systems [1, 38], as well as programming support tools and
environments [50, 67] have been carried out. Such surveys
have focused on specific issues of the denoted SLC subar-
eas. While some previous ITICSE working groups [72, 55]
have listed a large number of SLCs, we are not aware of any
comprehensive survey of SLCs, and we recognize that such
a survey would be very wide. Our online survey augments
previous surveys by giving some overview of SLCs currently
used by educators and our literature survey covers some re-
cent developments in the field. A comprehensive survey,
however, would be outside the scope of our working group.

In contrast with previous surveys, we have analyzed SLCs
in a novel way by building a new categorization approach
that captures the smartness of the interaction process be-
tween the user and the tool. Previously, some taxonomies
and categorization schemes have been presented in SLC sub-
areas, such as [50, 69], but prior approaches focus on spe-
cific issues in the subarea each addresses, whereas we take a
more general view. On the other hand, Ihantola et al. [41],
while discussing algorithm visualization, do take a more gen-
eral view. They identify several dimensions in their taxon-
omy of effortlessness, including scope (a tool can be lesson-
specific, course-specific, domain-specific and no-specific) and
integrability (e.g., installation, customization, platform in-
dependence, internationalization, course management sup-
port and integration to hypertext). Their third dimension
is interaction, though from a somewhat different point of
view to ours, where they discuss the producer-system inter-
action and visualization-consumer interaction.

Several previous ITiCSE working groups discussing issues
in smart content [72, 73, 55] have carried out online surveys
for educators on various issues of using and adopting SLCs.
Our work here augments these previous survey results. The
previous working group reports have also proposed some
technical architectures and/or guidelines for improving in-
teroperability of SLCs. Roessling, Malmi, et al. [72] pro-
vided only guidelines to be considered in developing SLCs,
while Roessling, Crescenzi, et al. [73] discussed issues in in-
tegrating SLCs with Moodle. Korhonen, Naps, et al. [55]
focused on interactive computer science books (icseBooks)
and presented an architecture for such books and discussed
in some detail what support is needed for different stake-
holders. They also discussed customization, peer review,
versioning, authentication and authorization, as well as data
collection in the context of icseBooks. While our work cer-
tainly overlaps with their work, there are clear differences as
well. We are not focusing on building from scratch a single
entity (book) with smart learning content, but we take a
stand on how existing content could be made more accessi-
ble, more easily integrated into other learning resources, and
more customizable in a distributed setting. Moreover, the
previous work did not consider the aspects of user modeling,
personalization, and adaptive learning content, although we
aimed specifically to include these into our work. We provide
a more advanced architecture and a much more comprehen-
sive and technical analysis of the problem at hand.

6.3 Future Work
One of the most significant problems with adoption and

reuse of SLCs today seems to be lack of communication: de-
velopers build SLCs mostly for their own use. They do not

often invest in discoverability, integration, or interoperabil-
ity of their SLC, reducing its chances of being adopted by
other educators. Educators have a hard time finding SLCs
that they can use in their courses. Even when they do find
SLCs, they may be reluctant to use them for fear of signifi-
cant commitment of time and effort to use the SLC.

At the same time, researchers have been building proto-
types of delivery platforms, user models, and other compo-
nents meant to facilitate discovery and integration of SLCs.
However, they have often been using these as proof-of-concept
systems, failing to graduate them into production systems,
and failing to reach out to developers of SLCs who might
benefit by integrating their SLCs with these systems. This
situation is not expected to improve unless there is a meet-
ing of the minds—of developers, educators and researchers.
This working group report is a step in bringing together
these three constituencies to start a dialog.

One future activity aimed at bridging this communica-
tion gap might be to hold a week-long hands-on workshop
of developers, researchers, and educators where developers
implement standard protocols so that their SLCs work with
the services developed by researchers; and educators verify
the utility of the SLC and its integration with such services.

In addition, this working group report lays out a clear ar-
chitectural goal to strive toward in order to facilitate SLC
integration in modern course management tools and learn-
ing platforms. The vision for this architecture was presented
in Section 5. Initially, short-term progress can be made by
developing a simple LTI-compliant adapter that can serve
as a go-between allowing SLCs to be embedded in platforms
that support LTI, as described in Section 5.4. This can be
combined with efforts to enhance existing SLC projects to
use a common learning record store backend for improved
data analytics accessibility. These short-term steps can sig-
nificantly increase opportunities for integrating SLCs into
modern course delivery platforms with noticeably reduced
effort. Longer term, educational researchers striving to im-
prove SLC access can work toward the more idealized version
of the architecture presented in Section 5.1. The notion of
an SLC discovery tool, or even an SLC brokering service, can
also be developed around the ideas presented in Section 5.2.
While achieving the entire vision presented here will take
significant effort over a long period of time, these steps also
provide for near-term benefits for both SLC developers and
CS educators who wish to employ smart learning content in
their courses.
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APPENDIX
A. EXAMPLES OF CS SMART LEARNING

CONTENT
In this appendix, we provide descriptions of selected re-

sources in computer science that may be appropriately called
smart learning content (SLC). Many of these examples re-
flect the work of members of this ITiCSE working group,
and are presented as examples only to illustrate the variety
present among SLCs, instead of being intended as a com-
prehensive list of all SLC work.

A.1 Algorithm and Program Visualization

A.1.1 JSAV and OpenDSA
JSAV is a JavaScript implementation of algorithm visual-

ization exercises used in TRAKLA2 [48]. JSAV supports
creation of of algorithm visualizations with different lev-
els of user interaction, automated assessment of students
solutions, embedding such smart content to online mate-
rial and collection of interaction data. JSAV runs also on
mobile touch devices and approximately half of the stu-
dents prefers solving algorithm visualization exercises on
mobile devices [48, 55]. JSAV is used also in the OpenDSA
(http://algoviz.org/OpenDSA/) open source project that
seeks to provide complete instructional materials for data
structures and algorithms (DSA) courses [28]. OpenDSA
eTextbooks can be tailored with the content selected by an
instructor, and OpenDSA has been used at all levels of the
computer science curriculum. OpenDSA eTextbooks inte-
grate textbook-quality content with algorithm visualizations
for all algorithms and many automatically assessed interac-
tive exercises. These include standard multiple choice-style
questions, small programming exercises, and algorithm pro-
ficiency exercises. In algorithm proficiency exercises, stu-
dents are shown a data structure in a graphical interface,
and must manipulate it to demonstrate knowledge of an al-
gorithmic process. For example, they might show the swap
operations that a given sorting algorithm uses.

Figure 10: OpenDSA aims to make it easy for an
instructor to create a custom interactive textbook
for his or her class.

OpenDSA uses a “content server” to deliver content to a
student’s browser in HTM5, with score data and user in-

teraction log data sent to a “scoring server” for grading and
storage. Most OpenDSA visualization and exercises support
the OEmbed protocol, and so can be integrated easily within
other web content. OpenDSA supports customization with
extensive internationalization support, and dynamic switch-
ing of example programming language.

A.1.2 JSVEE
JSVEE (JavaScript Visual Execution Environment) [79]

library provides an easy way to publish interactive program
execution visualizations (see Figure 11). By using the li-
brary, HTML5-based animations can be embedded in web
pages together with the text and other learning materials.
Animations help students to understand how the program is
executed by showing a graphical representation of the com-
puter’s memory and executing small code snippets by ani-
mating all the steps of the execution. Animations show, for
example, how parameter passing, stack, heap, objects, refer-
ences and other important concepts work which are normally
completely invisible to the students but still very important
concepts to understand.

Figure 11: An interactive animation of a simple
while loop made with the JSVEE library.

A.2 Automatic assessment tools

A.2.1 Web-CAT
Web-CAT (http://web-cat.org/) is a web-based auto-

mated grading system for programming assignments [24, 23,
22]. It uses a plug-in-based architecture to provide for cus-
tomizability and extensibility. While the server itself is im-
plemented in Java, student assignments are processed by
plug-ins, and new programming languages can be supported
by creating new plug-ins. Many of Web-CAT’s benefits
stem from allowing students to experience multiple feed-
back/revision cycles before completing their assignments, so
that they may incorporate the results from automated feed-
back into their solution development process rather than
only receiving feedback after the assignment is finished. While
instructors can use reference tests to grade student work,
Web-CAT is most well-known for allowing instructors to
grade students based on how well they test their own code.
Web-CAT is distributed for free as an open-source project.

A.2.2 Test My Code
Test My Code [90] is a service that is used to both assess

students’ work and to scaffold students as they are working
on programming assignments. The service contains back-
end services that are used to provide scoreboard details,
create courses, create embeddable questionnaires, monitor
students’ progress, create code reviews, and store snapshot
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Figure 12: Web-CAT

Figure 13: Test My Code

data from the students progress. Students working with
Test My Code typically utilize an IDE plugin that provides
authentication, functionality for downloading and submit-
ting programming assignments, functionality for gathering
feedback from the assignments (feedback questions created
within the backend), functionality for providing hints or
scaffolding messages that can be used to redirect students’
work, and asking and receiving code reviews as well as key-
level logging. Test My Code also provides a web-based editor
that can be embedded to a web page.

A.3 Coding Tools

A.3.1 Codecademy
Codecademy (http://www.codecademy.com) is a web por-

tal containing interactive learning materials for program-
ming in many languages, such as Python, Ruby, PHP, Java-
script and HTML/CSS. Tutorials are completed by follow-
ing step-by-step instructions and writing the required code
in the code editor. The code is executed inside the envi-
ronment and therefore it is an easy way to learn program-
ming languages in the browser without installing any exter-
nal software.

Figure 14: An interactive coding session in
Codecademy. The instructions are on the left side
and coding area on the right side. The output of the
program is also visible to check the results.

A.4 Algorithm and program simulation tools

A.4.1 UUhistle

Figure 15: UUhistle is executing a recursive function
call.

UUhistle[82] is a program visualization and simulation ap-
plication for novice programmers. It can visualize the ex-
ecution of the given Python programs but in addition to
this, it can also be used to create visual program simulation
exercises in which students take the role of the computer
and execute the program by dragging and dropping the vi-
sual elements. In this way students are enforced to think
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constantly the correct execution model instead of passively
watching the animation. UUhistle can be embedded as Java
applet to web pages or used as an independent application.

A.5 Problem-solving support tools

A.5.1 js-parsons
Js-parsons (Figure 16), is used to give automated feed-

back from visual code construction exercises [40]. These are
a type of scaffolded program construction tasks where the
learner is given a set of code fragments, blocks of a single
or multiple lines of code, and from these the task is to piece
together a program. In js-parsons environment, learners not
only select and order, but also indent and edit code frag-
ments. In Python, code indentation has a semantic meaning.
That is, code blocks are defined by indentation instead of
start and end symbols such as curly braces. We have found
this kind of exercises well suited to mobile gadgets where
the challenge is to effectively create and adapt content to
touch devices and overcome the restrictions of these novel
learning platforms [39]. Detailed logs can be used to analyze
students’ problem solving processes [31]. The system is used
at Aalto and at the University of North Carolina at Char-
lotte, as well as in the interactive version of How to Think
Like a Computer Scientist: Learning with Python (http://
interactivepython.org/runestone/static/thinkcspy/

index.html).

Figure 16: Code construction in js-parsons mobile
environment.

A.5.2 Problets
Problets (http://problets.org) are software tutors de-

signed to help students learn programming concepts by solv-
ing problems. They are meant to be used as supplements to
classroom instruction and complements to traditional pro-
gramming projects. The types of problems presented by
problets include expression evaluation, debugging, code trac-
ing and specifying program state. Problets are available for
all the topics typically covered in introductory programming
courses in C++, Java and C#. Problets provide step-by-
step explanation of the correct solution to each problem,
which has been shown to improve learning. Problets adapt
to the learner, minimizing the number of problems solved
while maximizing learning. They have been used over the
web by educators at dozens of institutions continually for
ten years as of Spring 2014.

Figure 17: Snapshot of Code Tracing Problet in
Java: Problem shown in the left panel and step-
by-step explanation shown in the right panel.

B. SURVEY RESULTS
Table 2 lists the systems reported in the online survey

(labeled as O) as well as the systems extracted from last
two years of ITiCSE (labeled as L). The systems have been
first classified using the dimensions of smart learning content
described in Section 2, after which pedagogical foundations
(discussed in Section 3.3) have been added to the systems.
Although the dimensions are not binary per se, the catego-
rization is presented in a binary fashion. Here, for example,
if a system has some free-form text inputs, it will be consid-
ered as a system that processes free-form input.

The labels for the dimensions are based on the categories
Input (Pre-specified (P) / Free-form (F)), Process (Not com-
putational (Nc) / Fully computational (Fc), and Output
(Generic (G) / Customized (C)).

Shorthands for the pedagogical basis are as follows: Col-
laborative learning (CI), Active learning (Al), Individual dif-
ferences (Id), External representations (Er), and Feedback
(Fb).
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System / SLC and Reported Usage Survey Dimensions Pedagogical foundations
L / O P / F Nc / Fc G / C CL AL ID ER Fb

Animal [65] (AV) O F Fc C 0 1 0 0 1
Ask-Elle [44] (AA) O P Fc G 0 1 0 1 0
Auto marked python exercises (AA) O F Fc C 0 1 0 0 0
BEAST (Sim) O F Fc C 0 1 0 0 1
BlueJ [53] (PV) O F Fc C 0 1 0 1 1
Cloudcoder [34] (Coding) O F Fc C 0 1 0 1 0
CodeAssessor [93] (AA,Coding) O F Nc C 0 1 0 1 0
Codecademy [http://www.codecademy.com/] (Other) O F Fc C 0 1 0 1 0
CodeHS [http://codehs.com/] (Coding) O F Fc C 0 1 0 0 1
CPU Sim [80] (Sim) O F Fc C 0 1 0 0 1
DrJava [2] (PV) O F Fc C 0 1 0 0 1
DrRacket [http://racket-lang.org/] (PV) O F Fc C 0 1 0 0 1
Edline [https://www.edline.net/] (AA) O P Fc G 0 1 0 0 0
GreedEx [89] (AV,Sim) O F Fc C 0 0 0 0 1
Insertion sort animation at Wikipedia (AV) O P Fc G 0 1 0 1 1
CodingBat [http://codingbat.com]

(PV,AA,Coding,Problem,Others) O F Fc C 0 1 0 0 1
Jeliot [4] (AV,PV) O F Fc C 1 1 0 1 0
JFLAP [70] (AV,PV,Sim) O F Fc C 0 1 0 1 0
jFlex (Sim) O F Fc C 0 0 0 1 0
jGRASP [20] (PV) O F Fc C 0 1 0 0 1
jHave [64] (AV) O F Fc C 0 1 1 0 1
KhanAcademy [https://www.khanacademy.org/] (Coding) O F Fc C 0 1 0 0 1
MatrixPro [47] (AV) O F Nc C 0 1 1 1 0
Mooshak [https://mooshak.dcc.fc.up.pt/] (AA) O F Fc C 0 1 0 0 1
MyProgrammingLab [http://www.pearsonmylabandmastering.

com/northamerica/myprogramminglab/] (Coding) O F Fc C 1 0 0 0 0
OpenDSA [28] (AV,Sim) O F Fc C 0 1 0 1 0
Practice-It! [http://practiceit.cs.washington.edu/] (Other) O F Nc C 0 1 0 1 0
Problets [57] (Problem) O P Fc C 0 0 0 1 0
Programming Course Resource System (Coding) O F Fc C 0 1 0 0 1
Pythontutor.com [http://pythontutor.com/] (PV) O F Fc C 0 1 0 0 1
Sketchmate [66] (AV,Sim) O F Fc C 0 1 0 1 0
Sorting Animation applets (AV) O P Fc G 0 1 0 1 0
Sphero (AV,PV) O F Fc C 0 1 0 1 0
Testing locally developed scripts (AA) O F Fc C 0 1 0 0 0
testpilot (AA) O P Fc G 0 1 0 1 0
TRAKLA [37] (AV) O F Fc C 0 1 0 1 0
TRAKLA2 [54] (AA,Sim) O F Fc C 0 1 0 1 0
Turingscraft CodeLab [http://turingscraft.com/] (Coding) O F Fc C 0 1 0 1 0
UUhistle [82] (Sim) O F Fc C 0 1 0 0 1
VAST [3] (Sim) O F Fc C 0 0 0 1 0
ViLLE [71] (PV,AA,Coding,Sim,Other) O F Fc C 0 1 0 0 1
WadeIn [11] (Problem) O F Fc C 0 1 0 0 1
Web-CAT [24, 23, 22] (AA) O F Fc C 0 1 1 0 1

AGUIA/J [75] (Coding) L F Fc C 0 1 0 1 0
beSocratic GraphPad [15] (Other) L F Fc C 0 1 0 1 1
CodeSpells [25] (Coding) L F Fc C 0 1 0 1 1
CS50 Submit [62] (AA) L F Nc C 0 0 0 0 0
Design Eye [42] (Other) L P Nc G 1 1 0 1 1
Evaluators 2.0 [17] (Sim) L P Fc C 0 1 0 1 1
JSAV [48] (PV) L P Fc C 0 1 1 1 1
JUG [7] (AA) L F Fc C 0 1 1 1 1
Marmoset [85] (AA) L F Fc C 0 1 0 0 1
MoCAS [16] (Other) L F Nc C 1 1 0 0 1
Problem Solving Tutor [43] (AA) L P Fc C 0 1 1 1 1
Programming Process Visualizer [63] (PV) L F Fc C 0 1 1 1 0
Test My Code [90] (AA) L F Fc C 0 1 0 0 1
WebIDE [33] (Coding) L F Fc C 0 1 0 1 1
µMPS2 hardware simulator [29] (Sim) L P Fc C 0 1 0 0 0

Table 2: Systems extracted both from the online survey (O) and the literature survey (L) identifying recent
advances in smart learning content. The systems are categorized both based on their dimensions (see Sec-
tion 2) and their pedagogical basis (see Section 3.3). Participants of the online survey were able to report
systems under the following categories: Algorithm Visualization (AV), Program Visualization (PV), Auto-
matic Assessment (AA), Coding, Simulation (Sim), and Other. The categories reported in surveys appear
in parentheses after each system name. It should be noted that these categories are only those reported by
respondents, which may not reflect all the features of the SLCs. For SLCs identified only from the literature,
the reported usage category is based on how the system is described in the article.
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C. SURVEY INSTRUMENT: SMART CONTENT IN CS EDUCATION
This survey is being conducted by the ITICSE 2014 Working Group on “Increasing Accessibility and Adoption of Smart

Technologies for Computer Science Education”. With the survey, we hope to gather information about the following:

• What kinds of Smart Content (SC) are being used by computing educators?

• What issues do teachers and students face in adopting and using SCs?

• What needs and visions do teachers and students have when using SCs?

This information will help the Working Group draft its report, which may be included in ACM InRoads magazine.
For the purposes of this survey, we define smart content (SC) as follows: Smart content is active educational content“beyond

simple files”. It has at least two of the following features:

• SC works with students interactively

• SC provides students feedback based on (some) of their actions

• SC collects data about students’ interactions with it

• SC remembers its users and allows them to resume from where they left off rather than start from scratch

• SC accumulates and displays students’ progress

• SC can adapt to the students’ interests and level of knowledge

Note that smart content might be delivered in different modes: e.g., as downloadable application, web service, or cloud
service.

We invite you to fill out this survey. Your participation in the survey from the perspective of a Computer Science educator,
whether or not you have used smart content in the recent past, would help us get a more complete picture of the use of smart
content in Computer Science education. We are also interested in your observations of your students’ use of smart content.

The survey contains two (short) parts:

1. Using smart content

2. Visions and challenges

We expect that the survey will take up to 10 minutes to fill out.
We would appreciate your participation by Friday, June 20th, 2014. However, if you miss this date, we would still be

interested in your participation, since we plan to continue to collect data beyond that date.

Part 1: Using smart content
What CS-specific SCs have you used since 2010? Select for each category that applies.

never have TRIED myself
but never used in my

course

have SUGGESTED
as optional learning

resource for my
students

have REQUIRED
students to use in my

course

Algorithm
visualizations (e.g.,
jHave, Animal)
Program
visualizations (e.g.,
BlueJ, jGRASP)
Automatic
assessment tools
(e.g., CourseMarker,
Boss)
Coding tools (e.g.,
CodeLab,
CloudCoder)
Simulation tools
(e.g., TRAKLA2,
UUhistle)
Problem-solving
software (e.g.,
problets, WadeIn)
Something else
(specify later)
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Names of SCs you have SUGGESTED or REQUIRED
If you have SUGGESTED or REQUIRED SCs in your course since 2010, please, list their names here.

• Algorithm visualization SC you/your institution developed: (e.g., jHave, Animal)

• Algorithm visualization SC others developed: (e.g., jHave, Animal)

• Program visualization SC you/your institution developed: (e.g., BlueJ, jGRASP)

• Program visualization SC others developed: (e.g., BlueJ, jGRASP)

• Automatic assessment SC you/your institution developed: (e.g., CourseMarker, Boss)

• Automatic assessment SC others developed: (e.g., CourseMarker, Boss)

• Coding SC you/your institution developed: (e.g., CodeLab, CloudCoder)

• Coding SC others developed: (e.g., CodeLab, CloudCoder)

• Simulation SC you/your institution developed: (e.g., TRAKLA2, UUhistle)

• Simulation SC others developed: (e.g., TRAKLA2, UUhistle)

• Problem-solving SC you/your institution developed: (e.g., problets, WadeIn)

• Problem-solving SC others developed: (e.g., problets, WadeIn)

• SC of a category not listed above, you/your institution developed:

• SC of a category not listed above, others developed:

Part 2: Visions and challenges
Describe what kinds of SCs you would like to use in your courses, in terms of covered content area and functionality.

Describe how you would like to integrate SCs into your courses from a pedagogical point of view, such as for open labs, self
study, classroom teaching or closed labs. Would they be for assignments, demonstrations, tests etc.? If you use more than
one category of SC (e.g., program visualization, algorithm visualization, etc.), please respond to each category separately.

What challenges and difficulties have you faced in adopting SCs? Please, select each which applies.

• Difficulty finding SCs which I could use

• Difficulty getting the SCs to work in my own / my students’ environments

• I cannot customize the SCs to fit my local needs

• I cannot integrate the SCs into my other learning resources

• I cannot integrate the SCs with other systems in my institution, e.g., to store results in grade roster

• Organizing student authentication has been laborious or problematic

• I am concerned about security of the collected student data

• My students need to use too many different SCs The SCs are not aligned with my way of teaching

• Other:

Have you used data collected by SCs? If yes, what data and for what purposes you have used it?
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