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Abstract. The goal of this work is to design and implement an agent
which generates hints for a player in a first person shooter game. The
agent is a computer-controlled character which collaborates with the
player to achieve the goal of the game. Such agent uses state of the art
reasoning techniques from the area of artificial intelligence planning in
order to come up with the content of the instructions. Moreover, it applies
techniques from the area of natural language generation to generate the
hints. As a result the instructions are both causally appropriate at the
point in which they are uttered and relevant to the goal of the game.

1 Introduction

Nowadays, most game tutorials make the player follow a fixed script. Hence
having a good or bad tutorial is still an art that depends on how good the script
is at faking some freedom (for instance, by foreseeing possible reactions of the
player) in order to make it more entertaining. Natural language generation can
offer game designers techniques that, in the future, may transform tutorial design
not in an art but in a science by providing efficient algorithms for managing the
players knowledge and dealing with the players reactions in a dynamic way.

The goal of this work is to design and implement an agent (a computer-
controlled character) which is able to generate hints that help a player advance
in a game situated in a 3D virtual world. Such agent uses state-of-the-art rea-
soning algorithms such as planning in order to come up with the content of the
instructions which are relevant at each point in the interaction. Furthermore, it
applies techniques from situated natural language generation such as common
ground management to generate the context-aware hints.

We believe that our contribution is interesting for the game industry as well
as for the players. For players, this work is a first step towards more flexible,
effective and entertaining tutorials; in order to sustain our claims we performed a
human based evaluation. For the game industry, good tutorials are expensive to
develop because it is costly to script all the appropriate game behaviors caused by
different potential player reactions (some of which might never be triggered). Our
approach can be seen as a way of automatically producing scripts that change
according to the unpredictable player behavior and the changing environment,
reducing the burden on the developer.



The paper proceeds as follows. In Section 2 we briefly review previous work
using planning for natural language generation in virtual environments. Section 3
describes the game environment where we implemented the game tutorial, and
discusses the process of planning problem generation from the game environ-
ment. Section 4 presents the process used to generate an instruction according
to a plan. Section 5 describes the integration of our generated instructions into
the game interaction as well as the management of common ground between the
player and the agent. Section 6 presents the results of our human evaluation.
Section 7 concludes the paper.

2 Natural language generation and planning

Natural language generation (NLG) is a subfield of Artificial Intelligence (AI)
and Computational Linguistics. It is concerned with the construction of com-
puter systems which can produce understandable texts in English or other hu-
man languages from some underlying representation of information. NLG sys-
tems combine knowledge about language and the application domain to auto-
matically produce reports, explanations, help messages, and other kinds of texts.

The area of NLG is a new area of research, with less than a couple of decades
of experience [10]. However, it is a rapidly developing field that has put forward
promising techniques in the last few years [1], in particular thanks to the shared
challenges proposed for comparing current NLG technologies. One of such chal-
lenges is called GIVE (Giving Instructions in Virtual Environments). GIVE [8] is
particularly relevant for our work since it applies NLG techniques to the problem
of generating natural language instructions in a 3D virtual world. As a result
several techniques investigated by GIVE’s research community are directly ap-
plicable to this work. In the GIVE task, human players try to solve a treasure
hunt in a virtual 3D world that they have not seen before. The computer has
a complete symbolic representation of the virtual world. The challenge for the
NLG system is to generate, in real time, natural-language instructions that can
guide the player to the successful completion of their task. Only the player can
effect any changes in the world, by moving around, manipulating objects, etc.
Figure 1 shows a screen-shot of the user’s view on the 3D world. On the top of
the picture, the current instruction given by the NLG system is displayed.

The NLG tasks and techniques that are relevant for GIVE and for this work
are content determination through planning, situated generation of referring
expressions and common ground management; we will briefly discuss them.

The task of content determination consists in deciding which information to
communicate to the player such that the information is appropriate at the cur-
rent point in the interaction. Such task can be implemented using the inference
technique of planning [3]. As a result, the instructions are both relevant to the
goal of the game and causally appropriate at the point in which they are uttered.

The situated generation of referring expressions area [10] provides algorithms
for coming up with descriptions of objects so that the player can identify such



Fig. 1. The player’s view during the GIVE Challenge

objects (e.g. “the door in front of you”) taking into account both static (e.g.,
color) and dynamic properties (e.g., visibility) of an object.

Finally, common ground management is the task of generating grounding
acts when appropriate according to the behavior of the player. Grounding acts
are utterances that, in a strict sense, do not add new information to the discourse
but instead they reinforce old information. For example, if the NLG system tells
the player “take the left green kit” and the player turns slightly left to face an
object, the system may generate a positive grounding act such as “yes” if that
was the right object, or “no” otherwise [11].

These three techniques are useful for generating hints that convey appropri-
ate information to the player and that consider the player reaction in order to
reinforce the information. In [5] the authors propose to cast all three tasks as
a planning problem. Such integration is proven to be successful for small and
discrete game worlds, however it does not scale to continuous game worlds in
which the player can move freely (and continuously) in 3 dimensions. As a result
in this paper we propose to use planning for handling only content determination
while we use more traditional NLG methods for the other two tasks.

3 Finding plans from a game state

The design of game characters decision making is one of the most challenging
tasks when designing a game; deciding what the expert game partner is to say
next is, by no means, an exception to this rule. In most games, the characters
decision making is either implemented in an ad-hoc way which is scripted for
that particular game, or designed as a state machine which needs to be kept
small because of scalability issues [9]. A believable game partner cannot get
away with a decision making process that is either scripted or small. First, the
agent needs to react appropriately to infinitely many player reactions which
cannot be predicted and scripted. And second, it needs to reason over complex



game states in a goal directed way in order to be able to give instructions that
are both appropriate in the current game context and relevant to the game goal.

Our approach to implement the decision making process of the expert game
partner (also called content determination in the NLG area) is to use an off-the-
shelf automated planner. The planner that we use is FastForward (FF). FF [7]
can handle big planning problems (with over a million objects) and return plans
of thousands of actions in seconds. Moreover, it can handle our game environment
(with a couple of hundreds of objects and plans with a maximum length of 250
actions) in a few milliseconds. Automated planners have reached a maturity level
in which they can be used in real time applications even if the need of re-planning
is high. In our setup there is a high need for re-planning because the behavior
of the player is non-deterministic and unpredictable.

The game environment for which we have implemented our game tutorial is
first person shooter game (FPS). The game scenario, called Igor1, was developed
using the Irrwizard framework2 and extended in C++. As in most FPS games,
the player is situated in a 3D world where he can perform several actions such as
walk, jump, climb stairs, shoot and pick up different items which have different
effects. The goal of the game is to kill a creature that is wandering in the 3D
world. The creature cannot be killed only by shooting at it because it has a self
healing mechanism that needs to be turned off first by deactivating a series of
power rays in a given order. The NLG agent, which guides the player through
the tutorial, knows which is the right sequence of rays as well as the position
of each of these rays. It is also able to recognize other items (such as poison or
health) and is aware of their effect.

The agent must extract information from the environment and represent it
in the standard planning language: PDDL [6]. PDDL is intended to express the
physics of a domain, that is, what facts are true in the world, what actions
are possible, and what the preconditions and effects of actions are. The agent
represents the number of rays that the player needs to pick up and its order.
Also, the agent codifies in the planning problem the game waypoints [9] and
adjacencies which are used by the planner to find the nearest path between the
player and the items to pick up. Moreover, the agent constantly verifies the health
level of the player and enemy and updates its condition (attacking, wandering,
dead etc) in the planning problem.

Once the agent has collected all the information about the current state
of the game evironment, it generates a planning problem and sends it to the
planner. Then the planner generates a plan that the agent will use to generate
the instructions. The planner takes, on average, 8.61 milliseconds to find a plan
for our game planning domain (with a standard deviation of 7.46 milliseconds).
Therefore, the planner can be integrated smoothly into the real time interaction
of our middle sized-game.3

1 https://sites.google.com/site/nicolasbertoa/igor
2 http://irrwizard.sourceforge.net/
3 The maximum length of a plan in our game environment is 250 actions (notice that

plans and plan length varies depending of the current state of the interaction).



4 Using plans to decide what to say

This section explains how the agent uses the plan obtained from the planner.
The plan is composed by a series of steps that the player must follow to meet the
plan goal. When the agent has a new plan, it must decide what instruction to say
next. Suppose that the planner gives us the plan steps 〈MoveTo (w4,w5), MoveTo
(w4,w5), MoveTo (w4,w5), MoveTo (w4,w5), MoveTo (w4,w5), MoveTo (w4,w5),
TakeKey(blueKey,w11)〉. This plan contains two types of actions, MoveTo and
TakeKey. The first type of action indicates that the player has to move from one
way-point to another, and the second indicates the ray that the player hast to
pick as well as the way-point where it is located.

These steps form a plan to pick up the ray blueKey as illustrated in Figure 2.
Now, the agent has the problem of deciding which plans steps to verbalize, that
is, it needs to do content determination based on the plan steps. Notice that
the naive approach of verbalizing all plan steps would result in a very repetitive
and over restrictive game partner. Therefore we made the content determination
process of our agent dependent on the area which is currently accessible to the
player. We define this area as the set of waypoints that are directly visible to
the player or visible by turning around on his current position, we will say that
these waypoints are visible 360.

The left drawing in Figure 2 shows that there are only three visible waypoints
of the plan at 360 degrees from the position of the player (waypoints 4, 5 and 6).
The others are blocked by the environment. From these waipoints, we verbalize
the one that has a referring expression which uniquely identifies it. Waypoints
4 and 6 are in the middle of rooms, so, there is no referring expression that
unambiguously describes them. But in the case of the waypoint 5, there is a door,
so we can use a referring expression to uniquely identify the object involved. As a
result, in the situation illustrated in the left drawing the instruction “go through
the door in front of you” is generated.

Fig. 2. Path of a sample plan with waypoints visible 360 highlighted.



However, what happens in the case when there is more than one object that
can be uniquely identified? The right drawing Figure 2 shows this case. There
are seven visible waypoints of the plan at 360 degrees from the position of the
player, and three of them have an object that can be uniquely identified: 5 (has
a small door), 7 (has a big door), and 9 (has some stairs). In this case, the agent
generates an instruction which refers to the the furthest visible object in the
path of the plan and verbalizes “see those stairs in front of you?” before saying
“take them”. This strategy is used when referring to objects that are far away
from the player, see Section 5 for details.

Fig. 3. Instructions generated using the plan and the player’s visibility

The screen-shots in Figure 3 illustrate the process we just explained. In the
screen-shot we have drawn the visible waypoints and the paths between them.
The arcs between waypoints illustrate the actions in the plan. In the screen-shot
in the top of Figure 3 the planned actions could be verbalized as “go forward, go
through the door, go forward, go forward, do you see those stairs in front of you?,
take them, go forward”. As we said, we have decided to verbalize the last action
in the sequence which contains a referring expression which uniquely identifies
the object involved in the action. In this example, this is the case for the action
“do you see those stairs in front of you?” since “those stairs” are a distinguishing
referring expression (given the current position of the player) for the stairs that
are further away. We say that the first actions, namely “go forward, go through
the door, go forward, go forward” are left tacit [2] and they are expected to be
inferred by the player given the causal constraints of the world (in simpler terms,
in order to see “those stairs” better the player will need to approach them). The
screen-shot at the bottom of Figure 3 (“Turn left”), illustrates an instruction
whose goal is to make directly visible a waypoint that is visible 360.

5 Guiding an unpredictable player in a changing game

Once the agent generates the instruction, it will show that instruction to the
player. Of course, the player may decide to follow the instruction or to do some-
thing else. A good game tutorial should handle both situations robustly; we



discuss our strategy in Section 5.1. Furthermore, not only the player but also
our environment can behave in a non deterministic way. The game partner should
be able to sense and react to a changing environment in an appropriate way;
Section 5.2 addresses this issue. In both of these situations grounding acts can
be used to reinforce instructions that were already communicated but were not
successfully accomplished yet; we illustrate how positive and negative grounding
acts are used in Section 5.3.

5.1 Dealing with unpredictable behavior

Our strategy for dealing with the player’s unpredictable behavior is to find a
new plan (that is, to replan) every time the player gets too far away from the
current plan. The crucial point here is to define what it means to get too far
from the current plan. Since we base our content determination procedure in
the player visibility we also use the same strategy to decide when to replan. The
agent will replan when all waypoints in current the plan are no longer visible
360 for the player.

Let’s illustrate our strategy by an example. Figure 4(a) shows an example
scenario and the waypoints of the plan which are visible 360.

Fig. 4. Re-planning example.

Now suppose that the player does not follow the instructions and ends up
in the situation illustrated in Figure 4(b). In this new situation, re-planning is
needed because none of the waypoints in the current plan (marked in green) is
visible anymore from the current player position.

Summing up, the agent will re-plan when there are not visible waypoints of
the plan, because is very difficult that the agent achieves the reorientation of the
player towards the goal. This strategy results effective (and not overly restrictive)
while guiding the player to the game goal as shown by our evaluation results in
Section 6.

5.2 Dealing with a changing game environment

Suppose we have 4 ray items: blue, green, violet and red and the correct sequence
to deactivate the enemy’s defense mechanism is red, blue and red. The left draw-
ing in Figure 5 shows the plan that the agent obtained from the planner (the



plan is simplified not to show move actions for presentation simplicity). What
the planner cannot handle (without replanning) is the fact that, when the player
picks up some object of the game, the object repositions randomly in another
way-point. For example, in the right drawing in Figure 5 we can see that the
obtained plan is incorrect because the red ray was repositioned at a different
way-point. The planner assumes a deterministic environment, we deal with a
non deterministic environment, such as our game, by means of replanning. That
is, when the position the environment changes in a non deterministic way (for
example when a ray changes its position randomly), the agent replans.

Fig. 5. Re-planning example due to non-deterministic environment.

5.3 The importance of the grounding acts

Grounding acts are utterances that, in a strict sense, do not add new information
to the discourse but instead they reinforce old information. Grounding acts are
not required from an informational point of view of communication, however,
they play an important role in order to cope with changing environments, and
the unpredictable behavior of the player.

The Figure 6 shows a case of the positive grounding act “Get this ray”
which follows the instruction “Turn left to see the ray” when the ray becomes
visible. This utterance is a positive grounding act because, it does not add new
information to the discourse. The player should be able to figure out that he
should pick up this ray, otherwise, why would have the agent guided him to
it? However, natural language is ambiguous and the player may not draw this
conclusion so the reinforcing achieved by the grounding act is indeed useful.

The other screen-shot in the Figure 6 illustrates a case of negative grounding
acts with “This is not the ray you need”, which follows the instruction “we need
to find the green ray”, when the player hovers the mouse pointer on the red
ray. With this instruction, the agent prevents the player from re-activating the
protection mechanism of the creature as a result of picking a ray in the wrong
sequence. Again, in a strict sense, the negative grounding act is not necessary
because the player has already been told that the next ray that is needed is



Fig. 6. Grounding acts that can be generated as a reaction to the player actions

green. However, the player may not remember this and may try to take the red
ray which is directly in front of him.

The screen-shots in Figure 7 illustrate a typical example of common ground
creation between the agent and the player. The screen-shot in the top shows
the instruction “Do you see that ray in front of you?”. With this instruction
the agent wants that the player to focus his attention on a particular ray. As
a result it is to be expected that the player gets closer to the ray. In this new
situation, the agent generates the instruction “Pick it up”. It is clear from this
instruction that the agent wants the player to pick up the blue ray in front of
him, but we can see that neither the ray nor its position or color are included in
the instruction. The pronoun can be used because the intended ray is already in
the the common ground between the agent and the player.

Fig. 7. Multi-utterance instructions which create and use the common ground

6 User evaluation

In this section we describe the results of the human evaluation of our agent. For
our evaluation we used objective and subjective metrics. Objective metrics were
collected by logging the player behavior and the subjective metrics by asking
players to complete a questionnaire. We used the same metrics that are used in



the GIVE Challenge [8] to evaluate systems in terms of the effectiveness, nat-
uralness of instructions and the engagement of the interaction. We gathered 10
volunteers for the evaluation. The demographic characteristics of the volunteers
that we collected are the following: they were all male, the average age was 20
years and all of them were gamers. This subject population is the target market
of the kind of game we implemented. The results that we obtained using the
objective metrics are shown in Figures 8 and 9.

Fig. 8. Objective metrics: Successful instructions, minor and serious faults per player.

The Figure 8 shows the number of successful instructions, minor faults and
serious faults. An instruction is considered successful if the player did exactly
what the system asked him to do, an instruction is considered a minor fault if
the player deviated from the instruction without causing a replanning, and an
instruction is a serious fault if the agent had to replan after uttering it. Their
averages are 44.1, 28.9 and 4.4, respectively. We can see that there were few
serious faults, this suggests that the agent was successful in the task of guiding
the player. Also, the players deviated from 40% of the instructions and, according
to the game logs, this is correlated to the presence of enemy which causes the
player to not follow the plan because he is busy shooting. Finally, approximately
60% of the instructions were directly successful, the player did exactly what the
agent asked him to do in more than half of the cases.

The Figure 9 shows the average of the other objective metrics we collected.
The successful instructions were completed quickly, which suggests that the in-
structions were easy to understand and execute. Also, players were able to com-
plete the level quickly without visiting all the map waypoints (they only visited,
in average, 65.5% of the map).



Fig. 9. Objective metrics: average times and distance traveled.

The Figure 10 shows the results of the subjective metrics. From these met-
rics we learned that the players considered that the instructions were too repet-
itive (no syntactic or lexical variability). Also, we realized that the instructions
where not visible enough time for the players to read them comfortably. We
were pleased to observed that the statements that were related to entertainment
obtained very high percentages, which suggests that the player had fun, that is
the main objective of any game. Another strong point is that the instructions
were considered clearly worded and were understood. Also, players perceived
that most of the time the agent helped the players when they were confused.

Fig. 10. Results of the subjective metrics.

We consider that these results are encouraging, in particular because one of
the main goals of our agent was to be able to participate in an engaging inter-
action while still providing useful instructions whenever the player needed help.



We are considering different techniques to improve the agent in those character-
istics in which it did not get such good results (for example, by doing corpus
based generation in order to avoid being repetitive [4]).

7 Conclusions

In this paper we have presented an agent which is able to generate hints that
help a player win a level in first person shooter game. Such agent uses state of
the art reasoning such as planning in order to come up with the content of the
instructions and state of the art techniques from natural language generation to
context-aware generate referring expressions and grounding acts.

Currently, most game tutorials make the player follow a fixed script which
must contemplate as many situations as possible. When a possible reaction of
the player is contemplated, the developer must add new code, increasing the
development cost. Our approach is a way of automatically producing scripts
that change according to the unpredictable player behavior and the changing
environment, reducing the burden of the developer. Our evaluation shows that
natural language techniques have a lot to contribute to the game community.
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